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2.2

LAWS OF LARGE NUMBERS

1 Review of Measure Theory

Fatou’s lemma: If f,, > 0 then liminf [ f,du > [liminff,dpu.
n—oo n—oo
Monotone convergence theorem: If f,, > 0 and f, 1 f then [ fodut [ fdpu.
Dominated convergence theorem: If f, — f a.e., |f,| < g for all n, and g is integrable, then [ f,du — [ fdu.

Suppose X,, — X a.s. Let g(x), h(x) be continuous functions with (i) g(z) > 0 and g(z) — oo as |z| — oo; (ii)
|h(z)|/g(z) — 0 as |z| — oo; (iii) Eg(X,) < K < oo for all n. Then Eh(X,,) — Eh(X).

Fubini’s theorem: If f > 0 or [ |fldu < oo, [y [y f(x,y)p2(dy)p(dz) = [,y fdp = [, [ f(@,y)u(de)ps(dy).

2 Laws of Large Numbers

Independence

Two events A and B are independent if P(ANB) = P(A)P(B). Two random variables X and Y are independent
if forall C,D € R, P(X € C,Y € D) = P(X € C)P(Y € D). Two o-fields F and G are independent if for all
A € F and B € G the events A and B are independent.

o-fields Fi,---,F, are independent if whenever A; € F; for i = 1,---,n, we have P(NI_, A4;) = [, P(4;).
Random variables X7, --- , X,, are independent if whenever B; € R for i = 1,--- ,n we have P(N!_,{X; € B;}) =
[T, P(X; € B;). Sets Ay, --- , A, are independent if whenever I C {1,--- ,n} we have P(M;icsA;) = [1.c; P(A)).

A sequence of events Ay, ---, A, with P(A; N A;) = P(A;)P(A;) for all i # j is called pairwise independent.
m-A theorem: If P is a m-system and L is a A-system that contains P then o(P) C L.

Suppose Aj, -, A, are independent and each A; is a m-system. Then o(A;),---,0(A,) are independent.
Suppose F; j,1 <i <n,1 <j < m(i) are independent and let G; = o(U,;F; ;). Then G, --- ,G,, are independent.

Iffor 1 <i<n,1<j<m(i), X,; are independent and f; : R™® — R are measurable then f;(X;,-- s Xim(i))

are independent.

If X;,---,X, are independent and have (a) X; > 0 for all 4, or (b) E|X;| < oo for all i then E([]_, X;) =
H?:1 BX;.

If X and Y are independent, F(z) = P(X < z), and G(y) = P(Y <y), then P(X +Y > 2) = [ F(z — y)dG(y).

Weak Laws of Large Numbers

L? weak law: Let X, X5, -- be uncorrelated random variables with EX; = p and var(X;) < C < oo. If
Sn =X+ -+ X,, then as n — 00, S,,/n — p in L? and in probability.

Let p, = E[S,],02 = var(S,). If 02 /b2 — 0 then S"b%““ — 0 in probability.
Truncation: To truncate a random variable X at level M means to consider X,; = X L{x|<my}-

For each n, let X, 5,1 < k < n be independent. Let 0 < b, — oo and X'nyk = Xy kl{x, c|<b,}- Suppose
that as n — oo (1) >op_, P(|1Xni| > bn) — 0; (2) 0,25, _, var(X,, ;) — 0. If we let S, = > p_, X, and
an =Y p_ E[X, 1], then S"b_“” — 0 in probability.
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Let X1, X5, beiid. with zP(|X;| > x) = 0asx — oo. Let S, = X1 +---+ X, and let p1,, = E[ X111 x,<ny]-
Then S,,/n — pu, — 0 in probability.

If Y >0 and p > 0 then E[Y?] = [ py?' P(Y > y)dy.

Let {X;}2, be iid. with E[|X;|]] < oco. Let S,, = X; +--- 4+ X,, and let p = E[X;]. Then S, /n — p in
probability.

The distribution of X is infinitely divisible iff for any n € N, there exists i.i.d. Y;’s such that X = Z?:l Y.
The distribution of X is stable if for all a,b > 0, and X3, X, i.i.d. copies of X, aX; + bX> 2 ¢X +d for some
c>0.
Borel-Cantelli Lemmas
If A, is a sequence of subsets of {2, then we write
limsup A, =Ny, Use_ A, = {w: w in infinitely many A,’s}
liminf A, =U;2, Nyy_, A, = {w : w in all but finitely many A;’s}
P(limsup A,,) > limsup P(4,,), P(liminf A,) < liminf P(A,).
Borel-Cantelli lemma: If >, P(A;) < oo, then P(A4,, i.0.) =0.

Let y,, be a sequence of elements of a topological space. If every subsequence y,, () has a further subsubsequence

Yn(my) that converges to y, then y, — .

X, — X in probability iff for every subsequence X,y there is a further subsubsequence X,,(,,,) that converges
a.s. to X.

If f is continuous and X,, — X in probability then f(X,) — f(X) in probability. If in addition f is bounded
then E[f(X,.)] = E[f(X)].

Let X1, X5, -+ be i.id. with E[X;] = g and E[X}] < co. Then S,,/n — u a.s.
For events A,,,n =1,2, -, independent such that > >~ P(A,) = oo, then P(4, i.0.) =1.

If X1, X5, - are i.i.d. r.v/s with E[X;] = oo, then P(|X,| > nio.) =1. Let C = {lim S,,/n exists & is finite}.
Then P(C) = 0.

If Ay, Ay, - -+ are pairwise independent and ">~ | P(A,)) =oco then > 14,/>"  P(A;) = 1 as. as n — oo.

For a sequence of increasing events A,,, P(A, i.0.) = 1iff Y P(A,|A5_,) = cc.

Strong Law of Large Numbers

Strong law of large numbers: Let X, Xo,--- be pairwise independent identically distributed random variables
with E[X;] < co. Let EX; = pand S,, = X; +---+ X,,. Then S,,/n — p a.s. as n — oc.

Let X, X5, -+ be i.i.d. with E[XT] = oo and E[X ] < oo, then S,,/n — oo a.s.

Let X, X5,--- be i.i.d. with 0 < X; < oo, write 7,, = X; +--- + X,, and let N, = sup{n : T,, < t}. If
E[X,] = p < o0, then as t — oo, N/t — 1/, a.s.
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If X,, = X as. and N(n) — oo a.s. then Xy¢,) — X a.s. But the analogous result for convergence in
probability is false!

Empirical distribution functions: Let X;, X5, -+ be i.i.d. with distribution F' and let F,(z) = Zisilxige  pg

n — 00, sup, |F,(z) — F(z)] — 0 a.s.

Uniform law of large numbers: Suppose f(x,0) is continuous in § € O for some compact ©. Let X;, X5, --
be a sequence of i.i.d. random variables. If f is continuous at 6 for a.s. all z € R and measurable of x at
each 6 and there exists some function d(z) such that E[d(X;)] < co and for all § € O, |f(x,0)| < d(z). Then

SuPpee |y imy f(Xis 0)/n — ELf (X1, 0)] =5 0.

Convergence of Random Series

Let X1, Xo,---,X,, -+ be a sequence of random variables. Define F, = o(X,,, X,,+1, ) as the information of
the future after time n. Let Z = N2, F,, be the tail o-field, i.e., the information inthe remote future. Intuitively,

A € T if and only if changing a finite number of values does not affect the occurrence of the event.
Kolmogorov’s 0-1 law: If Xy, X5, -+, X,,,--- are independent and A € Z, then P(A) =0 or 1.

A finite permutation of N is a map from N onto N such that there is a finite I with (i) =4 for all # > I. For
SN, associated with its natural product sigma field 7V, and any w = (w1, wa, - ), let T(w) = (wr(1), Wr(2)s "+ )-
An event A € FV is permutable if 77!(A) = A for any finite permutation 7. All permutable events form the

exchangeable o-field, denoted by £. All events in the tail o-field 7 are permutable.

Hewitt-Savage 0-1 law: If X, X5, - , areii.d. and B € £(RY). Denote X = (X1, Xs,--+). Then P(X € B) =0

or 1.

Kolmogorov’s maximal inequality: Suppose Xi, Xs,- -+, X, are independent with E[X;] = 0, var(X;) < co. Let
S, = X1+ -+ X, then P(maxy<, |Sk| > z) < %

We call a sequence of r.v’s Sy, 5, - a martingale if (i) there is a sequence of o-algebras F; C F C --- and
S; € F; for all ¢; (ii) S;’s are integrable; (iii) For each k, E[Sy1|Fk] = Sk. If the “=" in (iii) is replaced by >

(resp. <), then we say that this sequence is a submartingale (resp. supermartingale).

Second-moment criterion: Suppose Xi, Xo,--- are independent and centered (i.e., for all i, E[X;] = 0). If
oo var(X,) < oo, then P(3°7 | X, (w) converges) = 1.

Kronecker’s lemma: If a,, 1 oo and ), @, /a, converges, then a,* >°" | x,, — 0.

Let X7, X5,--+ be i.i.d. random variables with E[X;] = 0 and E[X?] = 0® < 0. Let S,, = X1 +---+ X,,. If
€ > 0, then S,,/n'/?(logn)'/?t¢ = 0 a.s.

Let X3, Xo, -+ be iid. with E[X;] = 0 and E[|X;|?] < co where 1 < p < 2. Write S,, = X; +---+ X,,. Then
S, /n'? =0 as.

Let Xy, X5, - be iid. with E[X;] = co and let S,, = X; + -+ X,,. Let a,, be a sequence of positive numbers

with a,,/n increasing. Then limsup,,_, . |S,|/a, = 0 or co according as >, P(|Xi| > a,) < 0o or = oo.

Kolmogorov’s three-series theorem: Let X, Xo,---, X, -+ be independent random variables. Let A > 0 and
Y; = Xi1x,/<a- In order to show that ) X; converges a.s., it is necessary and sufficient that (i) ZZO:1 P(|X,| >
A) < oo; (ii) Y07 | E[Y,,] converges; (iii) Y -, var(Y,) < co.
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Large Deviations

Let X1, Xo, -+ be iid. with E[X;] = g and let S,, = X7 + X5+ --- + X,,. According to CLT, the typical value
of S,, — nu is O(y/n). What about atypical deviations of S,, — nu? According to WLLN, we know that for any
a > pu, P(S, >na) — 0. We want to discuss the existence and value of the limit: lim, %log P(S,, > na).

Let m, = P(S,, > na). Then 7,1, > P(S, > na,Syim — Sn > ma) = m,Tp. Let v, =108 70, Yotm = Yo + Ym-
As n — oo the limit of v, exists and lim,, 77" = sup,, 77" We define vy(a) = lim, ;o ¥n/n < 0. Then for any
distribution and any n and a, P(S, > na) < e"(@) | We want to show ~v(a) < 0if a > p.

If the moment generating function () = Elexp(0X;)] < oo for some 6 > 0, then P(S,, > na) < exp[n(log () —
0a)]. Let k(0) =log(0). If a > u, then af — k(6) > 0 for all sufficiently small 6.

We will further strengthen our upper bounds by finding the maximum of A(f) = af — k(6). Let 6, = sup{0 :

P(0) < oo} and 6_ = inf{6f : () < co}. Now since that () € C> within (0_,0,), we have N (0) = a — 'Zl((g)).

So the maximal point of A must satisfy 1'(0)/1(8) = a. For the existence and uniqueness of such point(s), we

introduce a new distribution, and use a trick named “tilting”.

We now introduce the distribution Fp by “reweighting F”: Fy(z) = ﬁ [°. e’ dF(y). By simple calculus,
¥'(0)

JadFy(a) = 5@, 4"(0) = [ a*edF (2), j5 550 = [ 2*dFo(x) ([ zdFy(z)
L ) is concave. Since we have 0y = M
Y’ (0a)

F is not a point mass at u, then > is strictly increasing and af — log ¢ (6
¥(0a)

Z
this shows that for each a > u thléie) is at most one 6, > 0 that solves a =

af —log1(0). Let F™ be the c.d.f. of S, = X; + -+ X,, and F} be the c.d.f. of S) = X + -+ + X} where
Xiiid ~ Fand X} iid ~ Fy = gy [7. e*dF(y). By induction, gg; = e 9(A\)". Then as n — o0,
n~'log P(S, > na) — —ab, +log(6,).

)2 > 0. If we assume the distribution

and this value of 0 maximizes

¥'(0)
$(0)

Some important information: x(6) = log(0),x'(0) =
na) = —ab, + k(6,).

, 0, solves £'(0,) = a, v(a) = lim, . = log P(S,, >

Suppose z, = sup{z : F(z) < 1} = 00,04 < oo, and ¢'(0)/1(0) increases to a finite limit ao as 0 1 ;. If
ap < a < oo, n tlog P(S, > na) — —ab, +log(0y), i.e. y(a) is linear for a > aq.

Suppose x, = sup{z : F(z) < 1} < oo and F has no mass at x,. Then 9(f) < oo for all § > 0 and
'(0)/¢(0) — x, as 0 — oo.

Now, we have shown the decaying asymptotic for all possible situations:
a < x, : exponential, rate = 6,
If 2, <o0: 4 a=ux,:exponential if P(X; = z,) > 0,0 otherwise
a>x,:0
If 6, = oo : exponential, rate = 6,
If '(6)/¢(0) — oo as 0 — 0 : exponential, rate = 0,

Ifz,=o00:
If0, <oo: a < ag : exponential, rate = 6,

If 4'(0) /1 (0) — ag as 6 — 0 :

a > ag : exponential, rate = 6,

Cramér’s theorem: Let I(a) be the Legendre transform of logv(-): I(a) := supycr(fa — log()). Then for
any closed set F, limsup,, ,. . n !log P(% € F) < —inf,ep I(x); for any open set G, liminf, ,., n~'log P(% €
G) > —inf,eq I(x).
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Intuition behind the tilting: Why do we want to introduce the measure Fj? Intuitively, the new measure is like a
“distorting mirror” — it “distorts” our view on how each event is likely to happen. So, when we want to estimate
a rare event A under P, suppose (1) we caan construct a new measure ) such that Q[A] is easily calculable, e.g.,

Q[A] =~ 1; (2) we have a uniform lower bound of the R-N derivative dP/d@Q > ¢ on A. Then we can conclude
that P[A] = [, 95dQ > cQ[A].

Let ¥ = {aq,---} stand for a finite-size alphabet. Let M;(3) be the space of all probability measures on X. The

entropy of some v € M;(X) is H(Z/) = - Zizll v(a;)log(v(a;)). The relative entropy of v with respect to some
other € My(X) is H(v|u) := Z _, v(a;)log :EZ%

Let Y; be i.i.d. r.v’s, p € M(¥). For n > 1, write Y = (Y3,---,Y,) and call LY € M;(Z) be the empirical

frequency of Y. Let T, (v) be the set of y a sequence of n letters whose empirical measure is v.

If y € T,,(v), then P, (Y = y) = e "HEW+HI) I particular, if y € T,,(u), then P, (Y =y) = e "HW,
For every possible empirical measure v of n letters, (n + 1)~I®le"#®) <|T, (v)] < enH®),

For every possible empirical measure v of n letters, (n + 1) 1FlenH®ln) < p (LT = 1) < enHIn),

Sanov’s theorem: For every set I' C M;(X), — inf epe H(v|p) < liminflog P, (L) € T') < limsup + log P, (L}
') < —inf,er H(v|p).

Percolation

Fix p € [0,1] and consider the d-dimensional lattice Z9. Assign to each edge e € E an independent Bernoulli
r.v. I(e) with parameter p. If I(e) = 1, we say that this edge is open, otherwise closed. Consider the connected

components of open egdes, then for any p € [0, 1], P,(A) = 0 or 1 where A = {3 infinite open clusters}.
If A is translation-invariant, then P(A) =0 or 1.

Actually we can go further and show that for any N = 0,1,---,00, P,[A(N)] = 0 or 1, where A(N) =
{3N infinite open clusters}. Or even further: for N =2,3,--- and N = oo, P,[A(N)] = 0.

Let p. = pc(d) = sup{p : P,(A) = 0}. Then one can show that 1/3 < p.(2) < 2/3. More generally, p.(1) = 1 and
for d >2,1/(2d — 1) < p.(d) < pe(2)(= 1/2).

By knowledge of Galton-Watson tree and the analogy between Z? and 2d-regular tree in high dimensions, we

can take an educated guess that p.(d) ~ 57 as d — oc.

3 Central Limit Theorems

The De Moivre-Laplace Theorem

Central Limit Theorem: Let X, X», -+ bei.i.d. with mean p and variance o2 € (0,00). Write S,, = X;+---+X,,

then 21 = A/(0,1).

Before discussing the central limit theorem in full generality, we first see a special example for Bernoulli random
variables. Let Xi, Xs,--- be i.i.d. random variables such that P(X; = 1) = P(X; = —1) = 1/2 and write
S, = X, + -+ + X,,. For integers |k| < n, P(Ss, = 2k) = C5:%272" since (Sy, + 2n)/2 ~ Binomial(2n,1/2).
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Local central limit theorem: If 2k/v/2n — x, then lim,_, o (7n)"/2e*" /2 P(S,, = 2k) = 1.

The De Moivre-Laplace Theorem: For a < b, P(a < S,,/\/n <b) — f;(27r)_1/2e_:”2/2dac.

Weak Convergence

A sequence of distribution function Fj, is said to converge weakly to a limit F', denoted by F, = F, if F,(y) —
F(y) at every point of continuity of F, i.e. every y € R such that F(-) is continuous at y.

A sequence of random variables X, is said to converge weakly or converge in distribution / law to a limit X, if

their distribution functions F,, converges weakly.

Skorokhod’s representation theorem: If F,, = F then there are random variables Y,,,1 < n < oo and Y with
living in the same probability space such that Y,, ~ F,,,;Y ~ Fand Y,, = Y as.

X, = X if and only if for every bounded continuous function g we have Eg(X,,) — Eg(X).

Continuous mapping theorem: Let g be a measurable function and D, = {z : g is discontinuous at x}.
X, = X, and P(X € D,) =0, then g(X,) = g(X).

Portmantean theorem: The following statements are equivalent: (1) X,, = X; (2) G open, liminf,_, P(X, €
G) > P(X € G); (3) G closed, limsup, ,._ P(X, € G) < P(X € G); (4) It P(X € dA) = 0, then lim,,_,.. P(X,, €
A)=P(X € A).

Helly’s selection theorem: For every sequence F;, of distribution functions, there is a subsequence F),;) and a

right continuous nondecreasing function F' so that at all points of continuity y of F, limy_,o Firr)(y) = F(y).

Every subsequential limit of the sequence F,, is the distribution function of a probability measure iff the sequence
is tight, i.e., for all e > 0, there is an M, so that limsup,,_, [l — F,,(M.) + F,(—M,)] <e.

If there is a function ¢ > 0 so that ¢(z) — oo as |z| — oo and C = sup,, [ ¢(z)dF, (z) < oo, then F), is tight.

Characteristic Functions

If X is a r.v., we define its Characteristic function (ch.f.) by ¢(t) := E[e"*] = E[cos(tX)] + iE[sin(tX)].

All characteristic functions have the following properties: (i) ¢(0) = 1; (ii) ¢(—t) = ¢(t); (iii) |(t)| = [Ee’¥| <
Ele™X| = 1; (iv) |¢(t + h) — ¢(t)| < Ele"™ — 1], so ¢(t) is uniformly continuous on R; (v) Ee®(@X+b) = ¢itbg(qat).

If X; and X5 are independent and have ch.f’s ¢; and ¢5. Then X; + X5 has ch.f. ¢ - ¢s.

Stein’s Lemma: If XY are jointly Gaussian, then for differentiable g : R — R, as long as the expectations are

well-defined, cov(g(X),Y) = cov(X,Y)E[¢' (X)].

If Fy,--- ,F, have ch.f. ¢1,--- ¢, and \; > 0,1 <¢ < n have \; +---+ X\, = 1. Then > A\ F; has ch.f. > \;¢;.
. . . T efita_e—itb

The inversion formula: If a < b, then 3= limy_o [~ “—=—0¢(t)dt = p(a,b) + su({a,b}).

If [ |¢(t)|dt < oo, then y has bounded continuous density f(y) = 5= [~ e "™ ¢(t)

Continuity theorem: Let p,,1 < n < oo be probability measures with ch.f. ¢,. (i) If u, = peo then ¢, (t) —
Goo(t) for all t. (ii) If ¢, (t) — ¢(¢) for all t, and ¢(t) is continuous at 0. Then {u,}52; is tight and has a weak
limit with ch.f. ¢.
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Let pu be a probability measure and ¢ be its ch.f. Then p({z : |z| > 2u='}) <u™' [ [1 — ¢(t)]dt.

If [|z["u(dz) < oo, then its ch.f. ¢ has a continuous derivative of order n given by ¢ (t) = [(iz) e u(dx).
In particular, (™ (0) = E[(iX)"].

However, if a characteristic function ¢x has a k-th derivative at zero, then the random variable X has all
moments up to k if k is even, but only up to (k — 1) if k is odd.

; i)™ . z|? Tl 9™
e — S o 0| < min(Bh 2,

If E|X|? < oo, then ¢(t) =1+ itEX — t?E|X|?/2 + o(t?).
If lim supy, w > —o0, then E[X?] < oo.

Given ¢ and x1,--- ,z, € R, we can consider the matrix with (¢, j) entry given by ¢(z; — x;). Call ¢ positive

definite if this matrix is always positive semi-definite Hermitian.

Bochner’s theorem: A function from R to € which is continuous at origin with ¢(0) = 1 is a ch.f. of some

probability measure on R if and only if it is positive definite.

Pélya’s theorem: If ¢ is real-valued, even and continuous such that (i) ¢(0) = 1; (ii) ¢ is convex for ¢ > 0; (iii)
¢(00) = 0; then ¢(¢) is the ch.f. of a distribution symmetric about 0.

Central Limit Theorems

Central Limit Theorem: Let X, Xs, -+ be i.i.d. with E[X;] = u,var(X;) = 0% € (0,00). If S, = X; + X5 +
+ X, T;LJZ”“ = N(0,1).

The Lindeberg-Feller theorem: For each n, let X, ,,,1 < m < n, be independent random variables for each n
with E[X,, ,] = 0. Suppose (i) >0 | E[X? ] = ¢® > 0; (ii) For all € > 0, lim,, o > E[X? 1x, .15 = 0.
Then S, = X,1 + -+ Xpn = N(0,02) as n — oco.

m=1

Converging together lemma: If X,, = X and Y,, = ¢, X,, + Y,, = X + ¢. A useful consequence of this result is
that if X,, = X and Z, — X,, = 0 then Z, = X.

Lévy’s condition for CLT: Let X3, X5, -+ beiid. and S,, = X; 4+ --- + X,,. In order that there exist constants

a, and b, > 0 so that (S, — a,)/b, = N(0,1), it is necessary and sufficient that W — 0.
1 112y

Chernoff bound: Let X; be independent Bernoulli r.v’s. Write S,, = X; + -+ + X,, and let u = E[S,,]. Then for
52

>0, P(S,>1+0)u) <e 2+5 P(S,<(1-0)p)<e =.

Hoeffding’s inequality for bounded r.v. Let X; be independent r.v’s such that X; € [a;,,b;] a.s. Write S,, =

X1+ -+ X, and let p = E[S,]. Then for § > 0, P(|S, — p| = 6) < 2exp(— 5= 2”;5; L

A random variable is sub-Gaussian, if and only if for some C' < oo and ¢ > 0, P(|X| > t) < Cet".
Hoeffding’s inequality for sub-Gaussian r.v.s: Let X; be independent zero-mean sub-Gaussian r.v.’s. Write .S,, =

X1+ -+ X,. Then there exists some ¢ > 0 such that for any 6 > 0, P(|S,| > ) < 2exp(—cd?/ >0 | Xillws)s
where || X||,, = inf{c > 0: E[eX/<"] < 2}.

Let X1, X5, be i.i.d. with E[X;] = 0,E[X?] = ¢?, and E[|X;|}] = p < co. Let N (z) is the distribution of the
standard normal distribution, then for all n > 1 and z € R, |F,,(z) — N (z)| < 3p/(c*y/n).



3.5

3.6

3.7

CENTRAL LIMIT THEOREMS

Local Limit Theorems

A random variable X has a lattice distribution if 3b, h > 0 so that P(X € b+ hZ) = 1. The largest h for which
the last statement holds is called the span of the distribution.

Trichotomy of a random variable: Let ¢(t) be the ch.f. of a random variable X. There are only three possibilities:
(1) |o(t)| < 1 for all t # 0; (2) There is a A > 0 so that [¢(A)] =1 and |p(N)| < 1 for 0 < t < A. In this case, X
has a lattice distribution with span 27/A; (3) |¢(¢)| = 1 for all £. In this case, X is deterministic.

Let X; be iid. r.v’s with E[X;] = 0,E[X?] = ¢ € (0,00). Suppose in addition P(X; € b+ hZ) = 1, ie. X;
are lattice with span h. Let p,(x) = P(S,/v/n = z) for z € L,, = {(nb+ hZ)/+/n}, and n(z) be the density of
N(0,0?). Then lim, o SUp,¢ /. |%pn(x) —n(z)| =0.

Let X; bei.i.d. nonlattice r.v’s with EX; = 0,EX? = ¢%. If z,,//n — x and a < b, /nP(S,, € (z,+a,z,+b)) —
(b —a)n(x).

Let pﬁﬂ>(-) stand for the n-step transition probability for d-dimensional simple random walk. Then pgi) (0) is

monotone decreasing in d.

Poisson Convergence

For each n let X, ,,,1 < m < n be independent random variables with P(X,, ,, = 1) = pym, P(Xpm = 0) =

1 — py,m- Suppose (i) lim, 00 >, 1 Pom = A; (i) limy, o0 maxy, <y Py = 0. Let S, := X, 1 + -+ - + X, 5, then
Sy, = Poisson(\).

d(u,v) = || — v||rv defines a metric on the set of probability measures on Z. ||u, — p|| — 0 if and only if
[ = f.

The p-th Wasserstein distance between two probability measures p and v on M with p-th moment is defined
as Wy(u,v) = (inferou,) foMd(:U,y)pd'y(;v,y))l/p where T'(u1, v) is the set of all couplings of p and v. One
can show that W, defines a metric and convergence under Wj-metric is equivalent to weak convergence plus

convergence of the first p-th moment.

Suppose that r balls are placed at random into n boxes. Then suppose r/n — ¢, the number of balls in each box

is approximately Poisson(c). Let X, be the number of empty boxes. Then if ne™"/" — X, X,, — Poisson(\).

Let X,,m,1 < m < n be independent random variables with P(X,, ,, = 1) = pp.m, P(Xn.m > 2) = €4.m. Suppose
hmn%oo Z:anl Pnm = )\7 hmn%oo maxm;m<n Pnym = O; hmn%oo Z:anl €n,m — 0. Let Sn = n,1 + -+ Xn,n; then

S,, = Poisson(A).

Poisson Process

Let N(s,t) be the number of students arriving at a certain dinning hall in the time interval (s,¢]. Suppose the
number of arrivals in intervals that are disjoint are independent, the distribution of N(s,t) only depends on ¢ — s,
P(N(0,h) =1) = Ah+ o(h), P(N(0,h) > 2) = o(h). Then N(0,t) has a Poisson distribution with mean At.

A family of random variables N;, ¢ > 0 is called a Poisson process with rate A, if (i) for 0 <t < s, N(s) — N(¢t) ~
Poisson(A(s —t)); (i) if 0 <tp <1 < -+ < t,, N(tg) — N(tx—1),1 < k < n are independent.



3.8

CENTRAL LIMIT THEOREMS

Suppose that between 12:00 and 1:00 cars arrive at the East Gate of PKU according to a Poisson process IVy
with rate A. Let Y; be the number of people in the i-th vehicle which we assume to be i.i.d. and independent
to N;. Then consider M (t) be the total number of visitors within those vehicles by time ¢, i.e. M(t) = SN Y,
with the convention that M(t) = 0 if N, = 0.

Let Y7,Y5,--- be ii.d. r.v’s; N and independent non-negative interger-valued r.v.; S = Y; + --- 4+ Yy with
S =0 when N = 0. (1) If E|Y;|,E[N] < oo, then E[S] = E[N] - E[Y}]; (2) If E[Y?],E[N?] < oo, then var(S) =
E[N]Var(Y;) + var(N)(E[Y;])?; (iii) If N ~ Poisson()), then var(S) = AE[Y].

Recall the problem of counting the number of cars arriving at the East Gate of PKU. Noting that Y; now stands
for the number of people in each vehicel, Y; has to take positive integer values. Let N be the number of cars
with exactly 7 passengers. For Y; taking value on 1,2, -+ ,m < oo, Nf are independent rate AP(Y; = j) Poisson

processes.

Suppose that in a Poisson process with rate A, for a point that lands at time s, we keep it with probability p(s).

Then the result is an inhomogenous Poisson process with rate Ap(s).

Inhomogenous Poisson process as time change of Poisson process: For p(t), and the standard Poisson process IV,

with rate A, we call N(t) = N( f(f Ap(s)ds) be the inhomogenous Poisson process with transition rate function
A(t) = Ap(t).

Suppose A\ is o-finite, we say a random measure p is a Poisson Point Process/Poisson random measure with
intensity measure X if (1) for all B € S, u(B) ~ Poisson(A(B)); (2) If By,--- , B,, be disjoint sets in S, then the

random variables p(By),- -, u(B,) are also independent.
Let T;, be the time of the n-th arrival of a Poisson process with rate A\. Let Uy, Us, - - - , U,, be independent uniform
on (0,t) and let (V;*)k=1,2,...n be the order statistics of {U;,---,U,}, i.e. V;* is the k-th smallest number from

(Uy,---,U,). Then, conditioning on N(t¢) = n, the vectors V = (V}",---, V) and T = (T},--- ,T,) have the

same distribution.

If 0 < s < ¢, then P(N, = m|N, = n) = C™(s/t)™(1 — s/t)"~™.

Limit Theorems in R?
We say X,, = X if E[f(X,)] = E[f(X)] for all bounded and continuous f.

General Portmantean Theorem: The following statements are equivalent: (1) E[f(X,)] — E[f(X)] for all
bounded and continuous f; (2) E[f(X,)] — E[f(X)] for all bounded and Lipschitz-continuous f; (3) For all
closed sets K, limsup,,_,.. P(X, € K) < P(X, € K); (4) For all open sets G, liminf, ,.. P(X, € G) >
P(X. € G); (5) For all sets A with P(X, € 0A) =0, lim,,_,o P(X,, € A) = P(X, € A); (6) Let Dy = the set
of discontinuous of f. For all bounded functions f with P(X € Dy) =0, we have E[f(X,,)] = E[f(X)].

For distribution F,, and F' on R¢, we say that F,, converges weakly to F, and write F,, = F, if F,,(z) — F(x) at

all continuity points of F'.

Distribution function in R%: (i) Nondecreasing: » <y = F(z) < F(y). (ii) lim, o F(x) = 1,lim,, , o, F(z) =
0. (iii) F is right continuous: lim¢, F(y) = F(x). (iv) AaF > 0 for all rectangles A.

Equivalence of two definitions: On R? weak convergence defined in terms of convergence of distribution F,, = F.,

is equivalent to notion of weak convergence defined for a general metric space.

10
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4.2

MARTINGALES

Tightness in R%: A sequence of probability measures p,, is said to be tight if for any € > 0, there is an M < oo
such that liminf, . g, ([—M, M]?) > 1 —e.

If u,, is tight, there is a weakly convergent subsequence.

The characteristic function of X = (Xy,---,X,) is ¢(f) = Elexp(it - X)]. If A = [ay,b1] X --- X [ag, by with
p(0A) = 0, then u(A) = limg o0 (2m) % f,_y 1, (1‘[;?:1 wj(tj)) $(2)dt, where 1, (s) = ZRist)—exp(=ish;)

18

Convergence theorem: Let X,,,1 < n < oo be random vectors with ch.f. ¢,. A necessary and sufficient condition

for F,, to converge weakly to a probability distribution F, is that ¢, (f) — du (), which is continuous at 0.
Cramer-Wold device: A sufficient condition for X,, = X, is that g X, = g- X for all g € RY.

The central limit theorem in R%: Let X, X5, -- be i.i.d. random vectors with EX,, = u, and finite covariances

(T j)mxm- Then (S, — np)/n'/? = x, where x is a multivariate normal with mean 0 and covariances (L) msxcm-

4 Martingales

Conditional Expectation

Existence and uniqueness of conditional expectation: Let (2,5, P) be a probability space, X be a random
variable such that E[|X|] < oo, ¥ C J€ be a sub o-algebra of 7. Then (1) Existence: 3 r.v. Y such that
Y € 4, E[]]Y|] < o0 and VG € 4,E[Y;G] = E[X;G]. We call such Y a version of E[X|¥¢]. (2) Uniqueness: If
Y,Y are versions of E[X|¥], then Y = Y as.

Orthogonal projection in L?: If E[X?] < oo, then Y = E[X|¥] is a version of the orthogonal projection of X
from L?(Q, 7, P) to L*(Q2,¥4, P), i.e. Y is the best G-measurable predictor of X, which minimizes E[(Y — X)?].

Properties of conditional expectation: (1) Y = E[X|¥9] = E[Y] = E[X]. (2) X € ¥ = E[X|¥9] = X as. (3)
Linearity: E[aX; + bX5|¥9]| = aE[X|¥9] + bE[X2|¥] a.s. (4) Positivity: X > 0= E[X|¥4] > 0 a.s. (5) Monotone
convergence theorem: 0 < X,, 1 X = E[X,,|¥4] 1 E[X|¥] a.s. (6) Fatou’s lemma: X,, > 0 = E[liminfX,|¥] <
liminfE[X,,|¥¢] a.s. (7) Dominated convergence theorem: |X,(w)| < V(w) a.s. Vn, E[V] < oo, 35,,00—> X as.,
tT}llggoE[Xn|%] — E[X|¥9] a.s. (8) If ¢(x) is convex, E[|c(x)|] < oo, then Elc(z)|¥4] > c(E[X|¥]) a.s. (9) Tower
property: If 7 C ¢, then E[E[X|¥]7] = E[E[X|]|¥9] = E[X|.Z]. (10) If Z € & then E[ZX|¥]| = ZE[X|¥].
(11) If 2 U 0(X,¥9) then E[X|0(¥4,.7)] = E[X|¥] a.s. In particular, if X 1l 77, then E[X|] = E[X] a.s.

Martingales, Almost Sure Convergence

Filtered spaces: (Q,.7,{F,}52,, P) satisfies %, C ¥, C %y C --- C ¥ (ie. {F,};2, is a filtration) and
(U2 Fn) i= Fo C Z (but not necessarily %, = .%). Given a filtration {.%,}, if a sequence of r.v!s {X,}
satisfies X,, € .#,, we say {X,,} is adapted to {#,}.

Martingale: X = {X,,} discrete time stochastic process is a martingale if: (1) {X,,} is adapted to some filtration
{F.}; (2) Vn,E[|X,,|]] < oo (but not necessarily E[| X, |] < M < 00); (3) Vn,E[X,,11|Z,] = X,,. If “="in (3) is

replaced by “>” or “<”, then we say X is a submartingale/supermartingale.
m < n, {X,} is martingale/submartingale/supermartingale, E[X,,|.%,,| =/ > / < X,,.
If X,, is a martingale w.r.t. %, and ¢ is a convex function with E|¢(X,,)| < oo for all n, then ¢(X,,) is a

submartingale w.r.t. %,.

11
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A process is predictable if C,, € %, _;.

You can’t beat the system: Let V,, = >, _, Ci(X), — X4_1), C is a predictable process. (1) If C' is non-negative,
|Cy(w)| < K,Vn,Vw, and X is martingale/supermartingale, then Y is martingale/supermartingale. (2) If C'is a
bounded predictable process and X is a martingale, then Y is a martingale. (3) In (1) and (2), the boundness
condition on C' may be replaced by the condition C,, € L?,Vn, provided we also insist that X,, € L?,Vn.

Stopping time: T : Q — Z,, if {T' <n} € %,,Vn < 0.

If X is a martingale/supermartingale and 7" is a stopping time, then the stopped process (Xran), is a martin-

gale/supermartingale, E[X71x,] = / < E[X,].

Doob’s optional stopping theorem: Let T" be a stopping time and X be a martingale/supermartingale. Then X
is integrable and E[Xr] = / < E[X/] in each of the following situations: (1) T is bounded; (2) X is bounded and
T is a.s. finite; (3) E[T] < oo, and, for some K € R, | X, (w) — X,,—1(w)| < K.

Define Cl = I{X0<a} and, for n Z 2, Cn = I{Cn,lzl}I{Xn,lgb} +I{Cn,,1=O}I{Xn,1<a}' Yn = ZZ:l Ck(Xk_Xk—l)-
The number Uxyla, b](w) of upcrossings of [a, b] made by n — X, (w) by time N is defined to be the largest & in
Z such that we can find 0 < 1 <7 < 89 <ty < -+ < 8 < tp < N with X, (w) < a, Xy, (w) > b,1<i<k.

The fundamental inequality (recall that Yy(w) = 0) is obvious: Yy (w) > (b — a)Uy|a,b](w) — [Xn(w) —a] .

Doob’s upcrossing lemma: Let X be a supermartingale. Let Uy/[a, b] be the number of upcrossings of [a,b] by
time N. Then (b — a)EUy|[a,b] < E[(Xy —a)7].

Let X be a supermartingale bounded in L! in that sup, E|X,| < oco. Let a,b € R with a < b. Then, with
Us([a,b]) := limy Un|[a,b], (b — a)EUsla,b] < |a| 4+ sup, E|X,| < oo so that P(Us[a,b] = c0) = 0.

Doob’s forward convergence theorem: Let X be a supermartingale bounded in L;: sup, E|X,,| < oo. Then,
almost surely, X, := lim,, X,, exists and is finite. For definiteness, we define X (w) := limsup,, X,,(w), Vw, so

that X is %4 measurable and X, = lim,, X,,, a.s.

Martingale convergence theorem: If X, is a submartingale with supEX " < oo, then as n — oo, X,, converges
a.s. to a limit X with E|X| < oco.

If X,, > 0 is a supermartingale, then as n — oo, X,, =& X a.s. and EX < EX,.

4.3 Examples

Doob’s decomposition: Any submartingale X,,,n > 0, can be written in a unique way as X,, = M,, + A,,, where

M, is a martingale and A,, is a predictable increasing sequence with Ag = 0.

Let X1, X5,--- be a martingale with | X, 11 — X,,| < M < oo. Let C = {lim, X,, exists and is finite}, D =
{limsup,, X,, = 400 and liminf, X, = —oo}. Then P(CUD) = 1.

Second Borel-Cantelli lemma: Let #,,n > 0 be a filtration with %, = {(, Q} and B,,,n > 1 a sequence of events
with B, € #,. Then {B, i.0.} = {>_°" | P(B,|.#,_1) = co}.

Let u,v be two probability measures on (2,.%#). Let %, T % be o-fields. Let u, and v, be the restrictions
of u and v to .%,. Suppose p, << v, for all n. Let X,, = du,/dv, and let X = limsup,, X,,. Then u(A4) =
S Xdv+p(AN{X = o0}) := pr(A)+ps(A), which gives the Lebesgue decomposition of j, i.e., pt, << v, pus L v.

12
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Kakutani dichotomy for infinite product measures: Let u,r be two probability measures on sequence space
(RY,RY) that make the coordinates &,(w) = w, independent. Let F,(z) = u(&, < z),Gn(z) = v(& < ).
Suppose F,, << G, and let g, = dF, /dG, > 0,G,-a.s. Let .Z, = (&, : m < n), let u,, v, be the restrictions

of 4 and v to .%,, and let X,, = % =1, @n- Then X, — X,v-as. > ~_ log(¢gm) > —oc is a tail event,

so the Kolmogorov 0-1 law implies v(X = 0) € {0,1} and it follows that either 4 << v or p L v, according as
I, [ /@mdGp >0 or = 0.

Doob’s Inequality, Convergence in [P, p > 1

If X,, is a submartingale and N is a stopping time with P(N < k) = 1, then EXy < EXy < EX.

Doob’s inequality: Let X,, be a submartingale, X,, = maxo<p<, X;5;A > 0 and A = {X,, > A}. Then
AP(A) <EX,14 < EXT.

LP maximum inequality: If X,, is a submartingale, then for 1 < p < oo, E(X?) < (55 )PE(X;))P. Consequently,
if Yy, is a martingale and Y} = maxo<m<n |Yin|, E[Y;[P < (J25)PE(|Y, 7).

LP convergence theorem: If X, is a martingale with sup E|X,,|? < oo where p > 1, then X,, — X a.s. and in L”.

Square Integrable Martingales
In this subsection, we will suppose X, is a martingale with X, = 0 and EX? < oo for all n.

Let X2 = M,,+ A,, be the Doob decomposition of X2. Then X, is L?>-bounded if EA,, = >~ | E(X,—X,,_1)? <

0.
E(sup,, | Xm|?) < 4EA..

lim,, ., X,, exists and is finite a.s. on {A, < co}.

Let f > 1 be increasing with [~ f(t)~2dt < co. Then X,,/f(A,) — 0 a.s. on {As = oo}

Second Borel-Cantelli Lemma: Suppose B,, is adapted to .%,, and p, = P(B,|Zn-1). Yom—1 1B(m)/ Domey Pm —> 1

a.s. on {> 7 p, =}

E(sup,, |X,|) < 3EALY?.

Uniform Integrability, Convergence in L!
{X}ier is uniformly integrable if lim /oo (sup;c; E(|X;]; | X;| > M)) = 0.

Given a probability space (Q2,.%y, P) and an X € L', then {E(X|.%) : F isa o-field C %} is uniformly

integrable.

Let ¢ > 0 be any function with ¢(z)/z — oo as x — oco. If E¢(|X;|) < C for all ¢ € I, then {X;,i € I} is

uniformly integrable.

Suppose that E|X,,| < oo for all n. If X,, — X in probability, then the following are equivalent: (i) {X, : n > 0}
is uniformly integrable. (ii) X,, — X in L'. (iii) E|X,,| — E|X| < oo.

For a submartingale, the following are equivalent: (i) It is uniformly integrable. (ii) It converges a.s. and in L!.

(iii) It converges in L.

13
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If a martingale X,, — X in L', then X,, = E(X|.%#,).

For a martingale, the following are equivalent: (i) It is uniformly integrable. (ii) It converges a.s. and in L'. (iii)
It converges in L'. (iv) There is an integrable random variable X so that X,, = E(X|.%,).

Suppose Z#,, T F o, i.e., F, is an increasing sequence of o-fields and Z, = o(U,.%,,). As n — oo, E(X|Z#,,) —
E(X| %) a.s. and in L.

Lévy’s 0-1 law: If #,, T %, and A € Z, then E(14|%,,) — 14 a.s.

Backwards Martingales

A backwards martingale is a martingale indexed by the negative integers, i.e., X,,,n < 0, adapted to an increasing
sequence of o-fields .%,, with E(X,,11].%,) = X,, for n < —1.

X_oo =lim,,_,_o X,, exists a.s. and in L*.
If X o =lim,, o X, and Z_ =N, %,, then X o =E(Xo|F_).

A sequence X1, X, - -+ is said to be exchangeable if for each n and permutation 7 of {1,--- ,n}, (X1, -, X,,) and
(Xr@y, -+ s Xr(n)) have the same distribution. If X, X5, - - - are exchangeable then conditional on € (exchangeable
o-field), X1, X, -+ are independent and identically distributed.

If X1, Xs,- - are exchangeable and take values in {0, 1}, then there is a probability distribution on [0, 1] so that
P(Xi=1,, Xp =1, X341 = 0,--- , X, = 0) = [} 0%(1 — )" *dF(f).
Optional Stopping Theorems
If X,, is a uniformly integrable submartingale, then for any stopping time N, Xy, is uniformly integrable.
If E| Xy| < 00 and X, 1(n>p) is uniformly integrable, then Xy, is uniformly integrable and hence EXy < EXy.

If X, is a uniformly integrable submartingale, then for any stopping time N < oo, we have EXy < EXy < EX_,

where X = lim,, X,,.

If X,, is a nonnegative supermartingale and N < oo is a stopping time, then EXy < EXy, where X, = lim,, X,,.
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