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LAWS OF LARGE NUMBERS

1 Review of Measure Theory

• Fatou’s lemma: If fn ≥ 0 then lim inf
n→∞

∫
fndµ ≥

∫
lim inf
n→∞

fndµ.

• Monotone convergence theorem: If fn ≥ 0 and fn ↑ f then
∫
fndµ ↑

∫
fdµ.

• Dominated convergence theorem: If fn → f a.e., |fn| ≤ g for all n, and g is integrable, then
∫
fndµ→

∫
fdµ.

• Suppose Xn → X a.s. Let g(x), h(x) be continuous functions with (i) g(x) ≥ 0 and g(x) → ∞ as |x| → ∞; (ii)
|h(x)|/g(x) → 0 as |x| → ∞; (iii) Eg(Xn) ≤ K <∞ for all n. Then Eh(Xn) → Eh(X).

• Fubini’s theorem: If f ≥ 0 or
∫
|f |dµ <∞,

∫
X

∫
Y
f(x, y)µ2(dy)µ1(dx) =

∫
X×Y fdµ =

∫
Y

∫
X
f(x, y)µ1(dx)µ2(dy).

2 Laws of Large Numbers

2.1 Independence

• Two events A and B are independent if P (A∩B) = P (A)P (B). Two random variables X and Y are independent
if for all C,D ∈ R, P (X ∈ C, Y ∈ D) = P (X ∈ C)P (Y ∈ D). Two σ-fields F and G are independent if for all
A ∈ F and B ∈ G the events A and B are independent.

• σ-fields F1, · · · ,Fn are independent if whenever Ai ∈ Fi for i = 1, · · · , n, we have P (∩ni=1Ai) =
∏n
i=1 P (Ai).

Random variables X1, · · · , Xn are independent if whenever Bi ∈ R for i = 1, · · · , n we have P (∩ni=1{Xi ∈ Bi}) =∏n
i=1 P (Xi ∈ Bi). Sets A1, · · · , An are independent if whenever I ⊂ {1, · · · , n} we have P (∩i∈IAi) =

∏
i∈I P (Ai).

• A sequence of events A1, · · · , An with P (Ai ∩Aj) = P (Ai)P (Aj) for all i 6= j is called pairwise independent.

• π-λ theorem: If P is a π-system and L is a λ-system that contains P then σ(P) ⊂ L.

• Suppose A1, · · · ,An are independent and each Ai is a π-system. Then σ(A1), · · · , σ(An) are independent.

• Suppose Fi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ m(i) are independent and let Gi = σ(∪jFi,j). Then G1, · · · ,Gn are independent.

• If for 1 ≤ i ≤ n, 1 ≤ j ≤ m(i), Xi,j are independent and fi : Rm(i) → R are measurable then fi(Xi,1, · · · , Xi,m(i))

are independent.

• If X1, · · · , Xn are independent and have (a) Xi ≥ 0 for all i, or (b) E|Xi| < ∞ for all i then E (
∏n
i=1Xi) =∏n

i=1 EXi.

• If X and Y are independent, F (x) = P (X ≤ x), and G(y) = P (Y ≤ y), then P (X + Y ≥ z) =
∫
F (z − y)dG(y).

2.2 Weak Laws of Large Numbers

• L2 weak law: Let X1, X2, · · · be uncorrelated random variables with EXi = µ and var(Xi) ≤ C < ∞. If
Sn = X1 + · · ·+Xn, then as n→ ∞, Sn/n→ µ in L2 and in probability.

• Let µn = E[Sn], σ2
n = var(Sn). If σ2

n/b
2
n → 0 then Sn−µn

bn
→ 0 in probability.

• Truncation: To truncate a random variable X at level M means to consider X̄M = X1{|X|≤M}.

• For each n, let Xn,k, 1 ≤ k ≤ n be independent. Let 0 < bn → ∞ and X̄n,k = Xn,k1{|Xn,k|≤bn}. Suppose
that as n → ∞ (1)

∑n
k=1 P (|Xn,k| > bn) → 0; (2) b−2

n

∑n
k=1 var(X̄n,k) → 0. If we let Sn =

∑n
k=1Xn,k and

an =
∑n

k=1 E[X̄n,k], then Sn−an
bn

→ 0 in probability.
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LAWS OF LARGE NUMBERS

• Let X1, X2, · · · be i.i.d. with xP (|X1| > x) → 0 as x→ ∞. Let Sn = X1+ · · ·+Xn and let µn = E[X11{|X1|≤n}].
Then Sn/n− µn → 0 in probability.

• If Y ≥ 0 and p > 0 then E[Y p] =
∫∞
0
pyp−1P (Y > y)dy.

• Let {Xi}∞i=1 be i.i.d. with E[|Xi|] < ∞. Let Sn = X1 + · · · + Xn and let µ = E[X1]. Then Sn/n → µ in
probability.

• The distribution of X is infinitely divisible iff for any n ∈ N, there exists i.i.d. Yi’s such that X =
∑n

i=1 Yi.

• The distribution of X is stable if for all a, b > 0, and X1, X2 i.i.d. copies of X, aX1 + bX2
d
= cX + d for some

c > 0.

2.3 Borel-Cantelli Lemmas

• If An is a sequence of subsets of Ω, then we write

lim supAn = ∩∞
n=1 ∪∞

m=n Am = {ω : ω in infinitely many Ai’s}

lim infAn = ∪∞
n=1 ∩∞

m=n Am = {ω : ω in all but finitely many Ai’s}

• P (lim supAn) ≥ lim supP (An), P (lim infAn) ≤ lim infP (An).

• Borel-Cantelli lemma: If
∑

i P (Ai) <∞, then P (An i.o.) = 0.

• Let yn be a sequence of elements of a topological space. If every subsequence yn(m) has a further subsubsequence
yn(mk) that converges to y, then yn → y.

• Xn → X in probability iff for every subsequence Xn(m) there is a further subsubsequence Xn(mk) that converges
a.s. to X.

• If f is continuous and Xn → X in probability then f(Xn) → f(X) in probability. If in addition f is bounded
then E[f(Xn)] → E[f(X)].

• Let X1, X2, · · · be i.i.d. with E[Xi] = µ and E[X4
i ] <∞. Then Sn/n→ µ a.s.

• For events An, n = 1, 2, · · · , independent such that
∑∞

n=1 P (An) = ∞, then P (An i.o.) = 1.

• If X1, X2, · · · are i.i.d. r.v.’s with E[Xi] = ∞, then P (|Xn| ≥ n i.o.) = 1. Let C = {limSn/n exists & is finite}.
Then P (C) = 0.

• If A1, A2, · · · are pairwise independent and
∑∞

n=1 P (An) = ∞ then
∑n

i=1 1Ai
/
∑n

i=1 P (Ai) → 1 a.s. as n→ ∞.

• For a sequence of increasing events An, P (An i.o.) = 1 iff
∑

n P (An|Acn−1) = ∞.

2.4 Strong Law of Large Numbers

• Strong law of large numbers: Let X1, X2, · · · be pairwise independent identically distributed random variables
with E[Xi] <∞. Let EXi = µ and Sn = X1 + · · ·+Xn. Then Sn/n→ µ a.s. as n→ ∞.

• Let X1, X2, · · · be i.i.d. with E[X+] = ∞ and E[X−] <∞, then Sn/n→ ∞ a.s.

• Let X1, X2, · · · be i.i.d. with 0 < Xi < ∞, write Tn = X1 + · · · + Xn and let Nt = sup{n : Tn ≤ t}. If
E[X1] = µ ≤ ∞, then as t→ ∞, Nt/t→ 1/µ, a.s.
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LAWS OF LARGE NUMBERS

• If Xn → X∞ a.s. and N(n) → ∞ a.s. then XN(n) → X∞ a.s. But the analogous result for convergence in
probability is false!

• Empirical distribution functions: Let X1, X2, · · · be i.i.d. with distribution F and let Fn(x) =
∑n

i=1 1Xi≤x

n
. As

n→ ∞, supx |Fn(x)− F (x)| → 0 a.s.

• Uniform law of large numbers: Suppose f(x, θ) is continuous in θ ∈ Θ for some compact Θ. Let X1, X2, · · ·
be a sequence of i.i.d. random variables. If f is continuous at θ for a.s. all x ∈ R and measurable of x at
each θ and there exists some function d(x) such that E[d(Xi)] < ∞ and for all θ ∈ Θ, |f(x, θ)| ≤ d(x). Then
supθ∈Θ | 1

n

∑n
i=1 f(Xi, θ)/n− E[f(X1, θ)]|

a.s.→ 0.

2.5 Convergence of Random Series

• Let X1, X2, · · · , Xn, · · · be a sequence of random variables. Define F ′
n = σ(Xn, Xn+1, · · · ) as the information of

the future after time n. Let I = ∩∞
n=1F ′

n be the tail σ-field, i.e., the information inthe remote future. Intuitively,
A ∈ T if and only if changing a finite number of values does not affect the occurrence of the event.

• Kolmogorov’s 0-1 law: If X1, X2, · · · , Xn, · · · are independent and A ∈ I, then P (A) = 0 or 1.

• A finite permutation of N is a map from N onto N such that there is a finite I with π(i) = i for all i ≥ I. For
SN, associated with its natural product sigma field FN , and any ω = (ω1, ω2, · · · ), let π(ω) = (ωπ(1), ωπ(2), · · · ).
An event A ∈ FN is permutable if π−1(A) = A for any finite permutation π. All permutable events form the
exchangeable σ-field, denoted by E . All events in the tail σ-field T are permutable.

• Hewitt-Savage 0-1 law: If X1, X2, · · · , are i.i.d. and B ∈ E(RN ). Denote X = (X1, X2, · · · ). Then P (X ∈ B) = 0

or 1.

• Kolmogorov’s maximal inequality: Suppose X1, X2, · · · , Xn are independent with E[Xi] = 0, var(Xi) < ∞. Let
Sn = X1 + · · ·+Xn, then P (maxk≤n |Sk| ≥ x) ≤ var(Sn)

x2 .

• We call a sequence of r.v’s S1, S2, · · · a martingale if (i) there is a sequence of σ-algebras F1 ⊂ F2 ⊂ · · · and
Si ∈ Fi for all i; (ii) Si’s are integrable; (iii) For each k, E[Sk+1|Fk] = Sk. If the “=” in (iii) is replaced by ≥
(resp. ≤), then we say that this sequence is a submartingale (resp. supermartingale).

• Second-moment criterion: Suppose X1, X2, · · · are independent and centered (i.e., for all i, E[Xi] = 0). If∑∞
n=1 var(Xn) <∞, then P (

∑∞
n=1Xn(ω) converges) = 1.

• Kronecker’s lemma: If an ↑ ∞ and
∑∞

n=1 xn/an converges, then a−1
n

∑n
m=1 xm → 0.

• Let X1, X2, · · · be i.i.d. random variables with E[Xi] = 0 and E[X2
i ] = σ2 < ∞. Let Sn = X1 + · · · + Xn. If

ϵ > 0, then Sn/n
1/2(logn)1/2+ϵ → 0 a.s.

• Let X1, X2, · · · be i.i.d. with E[Xi] = 0 and E[|Xi|p] < ∞ where 1 < p < 2. Write Sn = X1 + · · · +Xn. Then
Sn/n

1/p → 0 a.s.

• Let X1, X2, · · · be i.i.d. with E[X1] = ∞ and let Sn = X1 + · · ·+Xn. Let an be a sequence of positive numbers
with an/n increasing. Then lim supn→∞ |Sn|/an = 0 or ∞ according as

∑
n P (|X1| ≥ an) <∞ or = ∞.

• Kolmogorov’s three-series theorem: Let X1, X2, · · · , Xn, · · · be independent random variables. Let A > 0 and
Yi = Xi1|Xi|≤A. In order to show that

∑
Xi converges a.s., it is necessary and sufficient that (i)

∑∞
n=1 P (|Xn| >

A) <∞; (ii)
∑∞

n=1 E[Yn] converges; (iii)
∑∞

n=1 var(Yn) <∞.
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2.6 Large Deviations

• Let X1, X2, · · · be i.i.d. with E[X1] = µ and let Sn = X1 +X2 + · · ·+Xn. According to CLT, the typical value
of Sn − nµ is O(

√
n). What about atypical deviations of Sn − nµ? According to WLLN, we know that for any

a > µ, P (Sn > na) → 0. We want to discuss the existence and value of the limit: limn→∞
1
n

logP (Sn > na).

• Let πn = P (Sn ≥ na). Then πn+m ≥ P (Sn ≥ na, Sn+m − Sn ≥ ma) = πnπm. Let γn = logπn, γn+m ≥ γn + γm.
As n → ∞ the limit of γn exists and limn→∞

γn
n

= supn γn
n

. We define γ(a) = limn→∞ γn/n ≤ 0. Then for any
distribution and any n and a, P (Sn ≥ na) ≤ enγ(a). We want to show γ(a) < 0 if a > µ.

• If the moment generating function ψ(θ) = E[exp(θX1)] <∞ for some θ > 0, then P (Sn ≥ na) ≤ exp[n(logψ(θ)−
θa)]. Let κ(θ) = logψ(θ). If a > µ, then aθ − κ(θ) > 0 for all sufficiently small θ.

• We will further strengthen our upper bounds by finding the maximum of λ(θ) = aθ − κ(θ). Let θ+ = sup{θ :

ψ(θ) < ∞} and θ− = inf{θ : ψ(θ) < ∞}. Now since that ψ(θ) ∈ C∞ within (θ−, θ+), we have λ′(θ) = a− ψ′(θ)
ψ(θ)

.
So the maximal point of λ must satisfy ψ′(θ)/ψ(θ) = a. For the existence and uniqueness of such point(s), we
introduce a new distribution, and use a trick named “tilting”.

• We now introduce the distribution Fθ by “reweighting F”: Fθ(x) = 1
ψ(θ)

∫ x
−∞ eyθdF (y). By simple calculus,∫

xdFθ(x) =
ψ′(θ)
ψ(θ)

, ψ′′(θ) =
∫
x2eθxdF (x), d

dθ
ψ′(θ)
ψ(θ)

=
∫
x2dFθ(x)−(

∫
xdFθ(x))

2 ≥ 0. If we assume the distribution
F is not a point mass at µ, then ψ′(θ)

ψ(θ)
is strictly increasing and aθ− logψ(θ) is concave. Since we have ψ′(0)

ψ(0)
= µ,

this shows that for each a > µ there is at most one θa ≥ 0 that solves a = ψ′(θa)
ψ(θa)

, and this value of θ maximizes
aθ − logψ(θ). Let Fn be the c.d.f. of Sn = X1 + · · · +Xn and Fnλ be the c.d.f. of Sλn = Xλ

1 + · · · +Xλ
n where

Xi i.i.d. ∼ F and Xλ
i i.i.d. ∼ Fλ = 1

ψ(λ)

∫ x
−∞ eyθdF (y). By induction, dFn

dFn
λ

= e−λxψ(λ)n. Then as n → ∞,
n−1 logP (Sn ≥ na) → −aθa + logψ(θa).

• Some important information: κ(θ) = logψ(θ), κ′(θ) = ψ′(θ)
ψ(θ)

, θa solves κ′(θa) = a, γ(a) = limn→∞
1
n

logP (Sn ≥
na) = −aθa + κ(θa).

• Suppose xo = sup{x : F (x) < 1} = ∞, θ+ < ∞, and ψ′(θ)/ψ(θ) increases to a finite limit a0 as θ ↑ θ+. If
a0 ≤ a <∞, n−1 logP (Sn ≥ na) → −aθ+ + logψ(θ+), i.e. γ(a) is linear for a ≥ a0.

• Suppose xo = sup{x : F (x) < 1} < ∞ and F has no mass at xo. Then ψ(θ) < ∞ for all θ > 0 and
ψ′(θ)/ψ(θ) → xo as θ → ∞.

• Now, we have shown the decaying asymptotic for all possible situations:

If xo <∞ :


a < xo : exponential, rate = θa

a = xo : exponential if P (X1 = xo) > 0, 0 otherwise

a > xo : 0

If xo = ∞ :



If θ+ = ∞ : exponential, rate = θa

If θ+ <∞ :


If ψ′(θ)/ψ(θ) → ∞ as θ → θ+ : exponential, rate = θa

If ψ′(θ)/ψ(θ) → a0 as θ → θ+ :

 a < a0 : exponential, rate = θa

a ≥ a0 : exponential, rate = θ+

• Cramér’s theorem: Let I(a) be the Legendre transform of logψ(·): I(a) := supθ∈R(θa − logψ(θ)). Then for
any closed set F , lim supn→∞ n−1 logP (Sn

n
∈ F ) ≤ − infx∈F I(x); for any open set G, lim infn→∞ n−1 logP (Sn

n
∈

G) ≥ − infx∈G I(x).
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• Intuition behind the tilting: Why do we want to introduce the measure Fθ? Intuitively, the new measure is like a
“distorting mirror” – it “distorts” our view on how each event is likely to happen. So, when we want to estimate
a rare event A under P , suppose (1) we caan construct a new measure Q such that Q[A] is easily calculable, e.g.,
Q[A] ≈ 1; (2) we have a uniform lower bound of the R-N derivative dP/dQ ≥ c on A. Then we can conclude
that P [A] =

∫
A
dP
dQ
dQ ≥ cQ[A].

• Let Σ = {a1, · · · } stand for a finite-size alphabet. Let M1(Σ) be the space of all probability measures on Σ. The
entropy of some ν ∈ M1(Σ) is H(ν) := −

∑|Σ|
i=1 ν(ai) log(ν(ai)). The relative entropy of ν with respect to some

other µ ∈M1(Σ) is H(ν|µ) :=
∑|Σ|

i=1 ν(ai) log ν(ai)
µ(ai)

.

• Let Yi be i.i.d. r.v.’s, µ ∈ M1(Σ). For n ≥ 1, write Y = (Y1, · · · , Yn) and call LYn ∈ M1(Σ) be the empirical
frequency of Y . Let Tn(ν) be the set of y a sequence of n letters whose empirical measure is ν.

• If y ∈ Tn(ν), then Pµ(Y = y) = e−n(H(ν)+H(ν|µ)). In particular, if y ∈ Tn(µ), then Pµ(Y = y) = e−nH(µ).

• For every possible empirical measure ν of n letters, (n+ 1)−|Σ|enH(ν) ≤ |Tn(ν)| ≤ enH(ν).

• For every possible empirical measure ν of n letters, (n+ 1)−|Σ|enH(ν|µ) ≤ Pµ(L
T
n = ν) ≤ enH(ν|µ).

• Sanov’s theorem: For every set Γ ⊂M1(Σ), − infν∈Γ◦ H(ν|µ) ≤ lim inf 1
n

logPµ(LYn ∈ Γ) ≤ lim sup 1
n

logPµ(LYn ∈
Γ) ≤ − infν∈ΓH(ν|µ).

2.7 Percolation

• Fix p ∈ [0, 1] and consider the d-dimensional lattice Zd. Assign to each edge e ∈ E an independent Bernoulli
r.v. I(e) with parameter p. If I(e) = 1, we say that this edge is open, otherwise closed. Consider the connected
components of open egdes, then for any p ∈ [0, 1], Pp(A) = 0 or 1 where A = {∃ infinite open clusters}.

• If A is translation-invariant, then P (A) = 0 or 1.

• Actually we can go further and show that for any N = 0, 1, · · · ,∞, Pp[A(N)] = 0 or 1, where A(N) =

{∃N infinite open clusters}. Or even further: for N = 2, 3, · · · and N = ∞, Pp[A(N)] = 0.

• Let pc = pc(d) = sup{p : Pp(A) = 0}. Then one can show that 1/3 ≤ pc(2) ≤ 2/3. More generally, pc(1) = 1 and
for d ≥ 2, 1/(2d− 1) ≤ pc(d) ≤ pc(2)(= 1/2).

• By knowledge of Galton-Watson tree and the analogy between Zd and 2d-regular tree in high dimensions, we
can take an educated guess that pc(d) ∼ 1

2d
as d→ ∞.

3 Central Limit Theorems

3.1 The De Moivre-Laplace Theorem

• Central Limit Theorem: Let X1, X2, · · · be i.i.d. with mean µ and variance σ2 ∈ (0,∞). Write Sn = X1+· · ·+Xn,
then Sn−µn√

nσ
⇒ N (0, 1).

• Before discussing the central limit theorem in full generality, we first see a special example for Bernoulli random
variables. Let X1, X2, · · · be i.i.d. random variables such that P (X1 = 1) = P (X1 = −1) = 1/2 and write
Sn = X1 + · · ·+Xn. For integers |k| ≤ n, P (S2n = 2k) = Cn+k2n 2−2n since (S2n + 2n)/2 ∼ Binomial(2n, 1/2).
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• Local central limit theorem: If 2k/
√
2n→ x, then limn→∞(πn)1/2ex

2/2P (S2n = 2k) = 1.

• The De Moivre-Laplace Theorem: For a < b, P (a ≤ Sn/
√
n ≤ b) →

∫ b
a
(2π)−1/2e−x

2/2dx.

3.2 Weak Convergence

• A sequence of distribution function Fn is said to converge weakly to a limit F , denoted by Fn ⇒ F , if Fn(y) →
F (y) at every point of continuity of F , i.e. every y ∈ R such that F (·) is continuous at y.

• A sequence of random variables Xn is said to converge weakly or converge in distribution / law to a limit X∞ if
their distribution functions Fn converges weakly.

• Skorokhod’s representation theorem: If Fn ⇒ F then there are random variables Yn, 1 ≤ n < ∞ and Y with
living in the same probability space such that Yn ∼ Fn, Y ∼ F and Yn → Y a.s.

• Xn ⇒ X if and only if for every bounded continuous function g we have Eg(Xn) → Eg(X).

• Continuous mapping theorem: Let g be a measurable function and Dg = {x : g is discontinuous at x}. If
Xn ⇒ X, and P (X ∈ Dg) = 0, then g(Xn) ⇒ g(X).

• Portmantean theorem: The following statements are equivalent: (1) Xn ⇒ X; (2) G open, lim infn→∞ P (Xn ∈
G) ≥ P (X ∈ G); (3) G closed, lim supn→∞ P (Xn ∈ G) ≤ P (X ∈ G); (4) If P (X ∈ ∂A) = 0, then limn→∞ P (Xn ∈
A) = P (X ∈ A).

• Helly’s selection theorem: For every sequence Fn of distribution functions, there is a subsequence Fn(k) and a
right continuous nondecreasing function F so that at all points of continuity y of F , limk→∞ Fn(k)(y) = F (y).

• Every subsequential limit of the sequence Fn is the distribution function of a probability measure iff the sequence
is tight, i.e., for all ϵ > 0, there is an Mϵ so that lim supn→∞[1− Fn(Mϵ) + Fn(−Mϵ)] ≤ ϵ.

• If there is a function ϕ ≥ 0 so that ϕ(x) → ∞ as |x| → ∞ and C = supn
∫
ϕ(x)dFn(x) <∞, then Fn is tight.

3.3 Characteristic Functions

• If X is a r.v., we define its Characteristic function (ch.f.) by ϕ(t) := E[eitX ] = E[cos(tX)] + iE[sin(tX)].

• All characteristic functions have the following properties: (i) ϕ(0) = 1; (ii) ϕ(−t) = ϕ(t); (iii) |ϕ(t)| = |EeitX | ≤
E|eitX | = 1; (iv) |ϕ(t+ h)− ϕ(t)| ≤ E|eihX − 1|, so ϕ(t) is uniformly continuous on R; (v) Eeit(aX+b) = eitbϕ(at).

• If X1 and X2 are independent and have ch.f.’s ϕ1 and ϕ2. Then X1 +X2 has ch.f. ϕ1 · ϕ2.

• Stein’s Lemma: If X,Y are jointly Gaussian, then for differentiable g : R → R, as long as the expectations are
well-defined, cov(g(X), Y ) = cov(X,Y )E[g′(X)].

• If F1, · · · , Fn have ch.f. ϕ1, · · · , ϕn and λi ≥ 0, 1 ≤ i ≤ n have λ1 + · · ·+ λn = 1. Then
∑
λiFi has ch.f.

∑
λiϕi.

• The inversion formula: If a < b, then 1
2π

limT→∞
∫ T
−T

e−ita−e−itb

it
ϕ(t)dt = µ(a, b) + 1

2
µ({a, b}).

• If
∫
|ϕ(t)|dt <∞, then µ has bounded continuous density f(y) = 1

2π

∫∞
−∞ e−ityϕ(t)dt.

• Continuity theorem: Let µn, 1 ≤ n ≤ ∞ be probability measures with ch.f. ϕn. (i) If µn ⇒ µ∞ then ϕn(t) →
ϕ∞(t) for all t. (ii) If ϕn(t) → ϕ(t) for all t, and ϕ(t) is continuous at 0. Then {µn}∞n=1 is tight and has a weak
limit with ch.f. ϕ.
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• Let µ be a probability measure and ϕ be its ch.f. Then µ({x : |x| ≥ 2u−1}) ≤ u−1
∫ u
−u[1− ϕ(t)]dt.

• If
∫
|x|nµ(dx) < ∞, then its ch.f. ϕ has a continuous derivative of order n given by ϕ(n)(t) =

∫
(ix)neitxµ(dx).

In particular, ϕ(n)(0) = E[(iX)n].

• However, if a characteristic function ϕX has a k-th derivative at zero, then the random variable X has all
moments up to k if k is even, but only up to (k − 1) if k is odd.

• |eix −
∑n

m=0
(ix)m

m!
| ≤ min( |x|n+1

(n+1)!
, 2|x|

n

n!
).

• If E|X|2 <∞, then ϕ(t) = 1 + itEX − t2E|X|2/2 + o(t2).

• If lim suph↓0
ϕ(h)−2ϕ(0)+ϕ(−h)

h2 > −∞, then E[X2] <∞.

• Given ϕ and x1, · · · , xn ∈ R, we can consider the matrix with (i, j) entry given by ϕ(xi − xj). Call ϕ positive
definite if this matrix is always positive semi-definite Hermitian.

• Bochner’s theorem: A function from R to C which is continuous at origin with ϕ(0) = 1 is a ch.f. of some
probability measure on R if and only if it is positive definite.

• Pólya’s theorem: If ϕ is real-valued, even and continuous such that (i) ϕ(0) = 1; (ii) ϕ is convex for t > 0; (iii)
ϕ(∞) = 0; then ϕ(t) is the ch.f. of a distribution symmetric about 0.

3.4 Central Limit Theorems

• Central Limit Theorem: Let X1, X2, · · · be i.i.d. with E[X1] = µ, var(X1) = σ2 ∈ (0,∞). If Sn = X1 + X2 +

· · ·+Xn, Sn−nµ
n1/2σ

⇒ N (0, 1).

• The Lindeberg-Feller theorem: For each n, let Xn,m, 1 ≤ m ≤ n, be independent random variables for each n

with E[Xn,m] = 0. Suppose (i)
∑n

m=1 E[X2
n,m] → σ2 > 0; (ii) For all ϵ > 0, limn→∞

∑n
m=1 E[X2

n,m1|Xn,m|>ϵ] = 0.
Then Sn = Xn,1 + · · ·+Xn,n ⇒ N (0, σ2) as n→ ∞.

• Converging together lemma: If Xn ⇒ X and Yn ⇒ c, Xn + Yn ⇒ X + c. A useful consequence of this result is
that if Xn ⇒ X and Zn −Xn ⇒ 0 then Zn ⇒ X.

• Lévy’s condition for CLT: Let X1, X2, · · · be i.i.d. and Sn = X1 + · · ·+Xn. In order that there exist constants
an and bn > 0 so that (Sn − an)/bn ⇒ N (0, 1), it is necessary and sufficient that y2P (|X1|>y)

E[X2
11|X1|≤y ]

→ 0.

• Chernoff bound: Let Xi be independent Bernoulli r.v’s. Write Sn = X1 + · · ·+Xn and let µ = E[Sn]. Then for
δ > 0, P (Sn > (1 + δ)µ) ≤ e−

δ2µ
2+δ , P (Sn < (1− δ)µ) ≤ e−

δ2µ
2 .

• Hoeffding’s inequality for bounded r.v. Let Xi be independent r.v.’s such that Xi ∈ [ai, , bi] a.s. Write Sn =

X1 + · · ·+Xn and let µ = E[Sn]. Then for δ > 0, P (|Sn − µ| ≥ δ) ≤ 2 exp(− 2n2δ2∑n
i=1(bi−ai)2

).

• A random variable is sub-Gaussian, if and only if for some C <∞ and c > 0, P (|X| ≥ t) ≤ Ce−ct
2 .

• Hoeffding’s inequality for sub-Gaussian r.v.’s: Let Xi be independent zero-mean sub-Gaussian r.v.’s. Write Sn =

X1 + · · ·+Xn. Then there exists some c > 0 such that for any δ > 0, P (|Sn| ≥ δ) ≤ 2 exp(−cδ2/
∑n

i=1 ||Xi||ψ2
),

where ||X||ψ2
= inf{c ≥ 0 : E[eX2/c2 ] ≤ 2}.

• Let X1, X2, · · · be i.i.d. with E[Xi] = 0,E[X2
i ] = σ2, and E[|Xi|3] = ρ < ∞. Let N (x) is the distribution of the

standard normal distribution, then for all n ≥ 1 and x ∈ R, |Fn(x)−N (x)| ≤ 3ρ/(σ3
√
n).
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3.5 Local Limit Theorems

• A random variable X has a lattice distribution if ∃b, h > 0 so that P (X ∈ b+ hZ) = 1. The largest h for which
the last statement holds is called the span of the distribution.

• Trichotomy of a random variable: Let ϕ(t) be the ch.f. of a random variable X. There are only three possibilities:
(1) |ϕ(t)| < 1 for all t 6= 0; (2) There is a λ > 0 so that |ϕ(λ)| = 1 and |ϕ(λ)| < 1 for 0 < t < λ. In this case, X
has a lattice distribution with span 2π/λ; (3) |ϕ(t)| = 1 for all t. In this case, X is deterministic.

• Let Xi be i.i.d. r.v.’s with E[Xi] = 0,E[X2
i ] = σ2 ∈ (0,∞). Suppose in addition P (Xi ∈ b + hZ) = 1, i.e. Xi

are lattice with span h. Let pn(x) = P (Sn/
√
n = x) for x ∈ Ln = {(nb + hZ)/

√
n}, and n(x) be the density of

N (0, σ2). Then limn→∞ supx∈Ln
|
√
n
h
pn(x)− n(x)| = 0.

• Let Xi be i.i.d. nonlattice r.v.’s with EXi = 0,EX2
i = σ2. If xn/

√
n→ x and a < b,

√
nP (Sn ∈ (xn+a, xn+b)) →

(b− a)n(x).

• Let p(d)n (·) stand for the n-step transition probability for d-dimensional simple random walk. Then p
(d)
2n (0) is

monotone decreasing in d.

3.6 Poisson Convergence

• For each n let Xn,m, 1 ≤ m ≤ n be independent random variables with P (Xn,m = 1) = pn,m, P (Xn,m = 0) =

1− pn,m. Suppose (i) limn→∞
∑n

m=1 pn,m = λ; (ii) limn→∞ maxm≤n pn,m = 0. Let Sn := Xn,1 + · · ·+Xn,n, then
Sn ⇒ Poisson(λ).

• d(µ, ν) = ||µ − ν||TV defines a metric on the set of probability measures on Z. ||µn − µ|| → 0 if and only if
µn ⇒ µ.

• The p-th Wasserstein distance between two probability measures µ and ν on M with p-th moment is defined
as Wp(µ, ν) = (infγ∈Γ(µ,ν)

∫
M×M d(x, y)pdγ(x, y))1/p where Γ(µ, ν) is the set of all couplings of µ and ν. One

can show that Wp defines a metric and convergence under Wp-metric is equivalent to weak convergence plus
convergence of the first p-th moment.

• Suppose that r balls are placed at random into n boxes. Then suppose r/n→ c, the number of balls in each box
is approximately Poisson(c). Let Xn be the number of empty boxes. Then if ne−r/n → λ, Xn → Poisson(λ).

• Let Xn,m, 1 ≤ m ≤ n be independent random variables with P (Xn,m = 1) = pn,m, P (Xn,m ≥ 2) = ϵn,m. Suppose
limn→∞

∑n
m=1 pn,m = λ, limn→∞ maxm≤n pn,m = 0, limn→∞

∑n
m=1 ϵn,m = 0. Let Sn = Xn,1 + · · · + Xn,n, then

Sn ⇒ Poisson(λ).

3.7 Poisson Process

• Let N(s, t) be the number of students arriving at a certain dinning hall in the time interval (s, t]. Suppose the
number of arrivals in intervals that are disjoint are independent, the distribution of N(s, t) only depends on t−s,
P (N(0, h) = 1) = λh+ o(h), P (N(0, h) ≥ 2) = o(h). Then N(0, t) has a Poisson distribution with mean λt.

• A family of random variables Nt, t ≥ 0 is called a Poisson process with rate λ, if (i) for 0 ≤ t < s, N(s)−N(t) ∼
Poisson(λ(s− t)); (ii) if 0 < t0 < t1 < · · · < tn, N(tk)−N(tk−1), 1 ≤ k ≤ n are independent.

9



CENTRAL LIMIT THEOREMS

• Suppose that between 12:00 and 1:00 cars arrive at the East Gate of PKU according to a Poisson process Nt

with rate λ. Let Yi be the number of people in the i-th vehicle which we assume to be i.i.d. and independent
to Nt. Then consider M(t) be the total number of visitors within those vehicles by time t, i.e. M(t) =

∑Nt

i=1 Yi

with the convention that M(t) = 0 if Nt = 0.

• Let Y1, Y2, · · · be i.i.d. r.v.’s; N and independent non-negative interger-valued r.v.; S = Y1 + · · · + YN with
S = 0 when N = 0. (1) If E|Yi|,E[N ] < ∞, then E[S] = E[N ] · E[Yi]; (2) If E[Y 2

i ],E[N2] < ∞, then var(S) =
E[N ]Var(Yi) + var(N)(E[Yi])2; (iii) If N ∼ Poisson(λ), then var(S) = λE[Y 2

i ].

• Recall the problem of counting the number of cars arriving at the East Gate of PKU. Noting that Yi now stands
for the number of people in each vehicel, Yi has to take positive integer values. Let N j

t be the number of cars
with exactly j passengers. For Yi taking value on 1, 2, · · · ,m <∞, N j

t are independent rate λP (Yi = j) Poisson
processes.

• Suppose that in a Poisson process with rate λ, for a point that lands at time s, we keep it with probability p(s).
Then the result is an inhomogenous Poisson process with rate λp(s).

• Inhomogenous Poisson process as time change of Poisson process: For p(t), and the standard Poisson process Nt

with rate λ, we call N̂(t) = N(
∫ t
0
λp(s)ds) be the inhomogenous Poisson process with transition rate function

λ(t) = λp(t).

• Suppose λ is σ-finite, we say a random measure µ is a Poisson Point Process/Poisson random measure with
intensity measure λ if (1) for all B ∈ S, µ(B) ∼ Poisson(λ(B)); (2) If B1, · · · , Bn be disjoint sets in S, then the
random variables µ(B1), · · · , µ(Bn) are also independent.

• Let Tn be the time of the n-th arrival of a Poisson process with rate λ. Let U1, U2, · · · , Un be independent uniform
on (0, t) and let (V n

k )k=1,2,··· ,n be the order statistics of {U1, · · · , Un}, i.e. V n
k is the k-th smallest number from

(U1, · · · , Un). Then, conditioning on N(t) = n, the vectors V = (V n
1 , · · · , V n

n ) and T = (T1, · · · , Tn) have the
same distribution.

• If 0 < s < t, then P (Ns = m|Nt = n) = Cmn (s/t)m(1− s/t)n−m.

3.8 Limit Theorems in Rd

• We say Xn ⇒ X∞ if E[f(Xn)] → E[f(X∞)] for all bounded and continuous f .

• General Portmantean Theorem: The following statements are equivalent: (1) E[f(Xn)] → E[f(X∞)] for all
bounded and continuous f ; (2) E[f(Xn)] → E[f(X∞)] for all bounded and Lipschitz-continuous f ; (3) For all
closed sets K, lim supn→∞ P (Xn ∈ K) ≤ P (X∞ ∈ K); (4) For all open sets G, lim infn→∞ P (Xn ∈ G) ≥
P (X∞ ∈ G); (5) For all sets A with P (X∞ ∈ ∂A) = 0, limn→∞ P (Xn ∈ A) = P (X∞ ∈ A); (6) Let Df = the set
of discontinuous of f . For all bounded functions f with P (X∞ ∈ Df ) = 0, we have E[f(Xn)] → E[f(X∞)].

• For distribution Fn and F on Rd, we say that Fn converges weakly to F , and write Fn ⇒ F , if Fn(x) → F (x) at
all continuity points of F .

• Distribution function in Rd: (i) Nondecreasing: x ≤ y ⇒ F (x) ≤ F (y). (ii) limx→∞ F (x) = 1, limxi→−∞ F (x) =

0. (iii) F is right continuous: limy↑x F (y) = F (x). (iv) 4AF ≥ 0 for all rectangles A.

• Equivalence of two definitions: On Rd weak convergence defined in terms of convergence of distribution Fn ⇒ F∞

is equivalent to notion of weak convergence defined for a general metric space.
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• Tightness in Rd: A sequence of probability measures µn is said to be tight if for any ϵ > 0, there is an M < ∞
such that lim infn→∞ µn([−M,M ]d) ≥ 1− ϵ.

• If µn is tight, there is a weakly convergent subsequence.

• The characteristic function of X⃗ = (X1, · · · , Xd) is ϕ(⃗t) = E[exp(i⃗t · X⃗)]. If A = [a1, b1] × · · · × [ad, bd] with
µ(∂A) = 0, then µ(A) = limT→∞(2π)−d

∫
[−T,T ]d

(∏d
j=1 ψj(tj)

)
ϕ(⃗t)dt, where ψj(s) = exp(−isaj)−exp(−isbj)

is
.

• Convergence theorem: Let Xn, 1 ≤ n ≤ ∞ be random vectors with ch.f. ϕn. A necessary and sufficient condition
for Fn to converge weakly to a probability distribution F∞ is that ϕn(⃗t) → ϕ∞(⃗t), which is continuous at 0.

• Cramer-Wold device: A sufficient condition for Xn ⇒ X∞ is that θ⃗ ·Xn ⇒ θ⃗ ·X∞ for all θ⃗ ∈ Rd.

• The central limit theorem in Rd: Let X1, X2, · · · be i.i.d. random vectors with EXn = µ, and finite covariances
(Γi,j)m×m. Then (Sn−nµ)/n1/2 ⇒ χ, where χ is a multivariate normal with mean 0 and covariances (Γi,j)m×m.

4 Martingales

4.1 Conditional Expectation

• Existence and uniqueness of conditional expectation: Let (Ω,H , P ) be a probability space, X be a random
variable such that E[|X|] < ∞, G ⊂ H be a sub σ-algebra of H . Then (1) Existence: ∃ r.v. Y such that
Y ∈ G ,E[|Y |] < ∞ and ∀G ∈ G ,E[Y ;G] = E[X;G]. We call such Y a version of E[X|G ]. (2) Uniqueness: If
Y,‹Y are versions of E[X|G ], then Y = ‹Y a.s.

• Orthogonal projection in L2: If E[X2] < ∞, then Y = E[X|G ] is a version of the orthogonal projection of X
from L2(Ω,H , P ) to L2(Ω,G , P ), i.e. Y is the best G-measurable predictor of X, which minimizes E[(Y −X)2].

• Properties of conditional expectation: (1) Y = E[X|G ] ⇒ E[Y ] = E[X]. (2) X ∈ G ⇒ E[X|G ] = X a.s. (3)
Linearity: E[aX1 + bX2|G ] = aE[X1|G ] + bE[X2|G ] a.s. (4) Positivity: X ≥ 0 ⇒ E[X|G ] ≥ 0 a.s. (5) Monotone
convergence theorem: 0 ≤ Xn ↑ X ⇒ E[Xn|G ] ↑ E[X|G ] a.s. (6) Fatou’s lemma: Xn ≥ 0 ⇒ E[lim inf

n→∞
Xn|G ] ≤

lim inf
n→∞

E[Xn|G ] a.s. (7) Dominated convergence theorem: |Xn(ω)| ≤ V (ω) a.s. ∀n, E[V ] < ∞, Xn → X a.s.,
then E[Xn|G ] → E[X|G ] a.s. (8) If c(x) is convex, E[|c(x)|] < ∞, then E[c(x)|G ] ≥ c(E[X|G ]) a.s. (9) Tower
property: If H ⊂ G , then E[E[X|G ]H ] = E[E[X|H ]|G ] = E[X|H ]. (10) If Z ∈ G then E[ZX|G ] = ZE[X|G ].
(11) If H ⊥⊥ σ(X,G ) then E[X|σ(G ,H )] = E[X|G ] a.s. In particular, if X ⊥⊥ H , then E[X|H ] = E[X] a.s.

4.2 Martingales, Almost Sure Convergence

• Filtered spaces: (Ω,F , {Fn}∞n=0, P ) satisfies F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ F (i.e. {Fn}∞n=1 is a filtration) and
σ(∪∞

i=0Fn) := F∞ ⊂ F (but not necessarily F∞ = F ). Given a filtration {Fn}, if a sequence of r.v.’s {Xn}
satisfies Xn ∈ Fn, we say {Xn} is adapted to {Fn}.

• Martingale: X = {Xn} discrete time stochastic process is a martingale if: (1) {Xn} is adapted to some filtration
{Fn}; (2) ∀n,E[|Xn|] < ∞ (but not necessarily E[|Xn|] < M < ∞); (3) ∀n,E[Xn+1|Fn] = Xn. If “=” in (3) is
replaced by “≥” or “≤”, then we say X is a submartingale/supermartingale.

• m < n, {Xn} is martingale/submartingale/supermartingale, E[Xn|Fm] = / ≥ / ≤ Xm.

• If Xn is a martingale w.r.t. Fn and ϕ is a convex function with E|ϕ(Xn)| < ∞ for all n, then ϕ(Xn) is a
submartingale w.r.t. Fn.
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• A process is predictable if Cn ∈ Fn−1.

• You can’t beat the system: Let Yn =
∑n

k=1 Ck(Xk −Xk−1), C is a predictable process. (1) If C is non-negative,
|Cn(ω)| ≤ K, ∀n, ∀ω, and X is martingale/supermartingale, then Y is martingale/supermartingale. (2) If C is a
bounded predictable process and X is a martingale, then Y is a martingale. (3) In (1) and (2), the boundness
condition on C may be replaced by the condition Cn ∈ L2, ∀n, provided we also insist that Xn ∈ L2, ∀n.

• Stopping time: T : Ω → Z+, if {T ≤ n} ∈ Fn, ∀n ≤ ∞.

• If X is a martingale/supermartingale and T is a stopping time, then the stopped process (XT∧n)n is a martin-
gale/supermartingale, E[XT∧n] = / ≤ E[X0].

• Doob’s optional stopping theorem: Let T be a stopping time and X be a martingale/supermartingale. Then XT

is integrable and E[XT ] = / ≤ E[X0] in each of the following situations: (1) T is bounded; (2) X is bounded and
T is a.s. finite; (3) E[T ] <∞, and, for some K ∈ R+, |Xn(ω)−Xn−1(ω)| ≤ K.

• Define C1 := I{X0<a} and, for n ≥ 2, Cn := I{Cn−1=1}I{Xn−1≤b}+I{Cn−1=0}I{Xn−1<a}. Yn =
∑n

k=1 Ck(Xk−Xk−1).
The number UN [a, b](ω) of upcrossings of [a, b] made by n 7→ Xn(ω) by time N is defined to be the largest k in
Z+ such that we can find 0 ≤ s1 < t1 < s2 < t2 < · · · < sk < tk ≤ N with Xsi(ω) < a,Xti(ω) > b, 1 ≤ i ≤ k.

• The fundamental inequality (recall that Y0(ω) = 0) is obvious: YN (ω) ≥ (b− a)UN [a, b](ω)− [XN (ω)− a]−.

• Doob’s upcrossing lemma: Let X be a supermartingale. Let UN [a, b] be the number of upcrossings of [a, b] by
time N . Then (b− a)EUN [a, b] ≤ E[(XN − a)−].

• Let X be a supermartingale bounded in L1 in that supn E|Xn| < ∞. Let a, b ∈ R with a < b. Then, with
U∞([a, b]) := limN UN [a, b], (b− a)EU∞[a, b] ≤ |a|+ supn E|Xn| <∞ so that P (U∞[a, b] = ∞) = 0.

• Doob’s forward convergence theorem: Let X be a supermartingale bounded in L1: supn E|Xn| < ∞. Then,
almost surely, X∞ := limnXn exists and is finite. For definiteness, we define X∞(ω) := lim supnXn(ω), ∀ω, so
that X∞ is F∞ measurable and X∞ = limnXn, a.s.

• Martingale convergence theorem: If Xn is a submartingale with supEX+
n < ∞, then as n → ∞, Xn converges

a.s. to a limit X with E|X| <∞.

• If Xn ≥ 0 is a supermartingale, then as n→ ∞, Xn → X a.s. and EX ≤ EX0.

4.3 Examples

• Doob’s decomposition: Any submartingale Xn, n ≥ 0, can be written in a unique way as Xn =Mn +An, where
Mn is a martingale and An is a predictable increasing sequence with A0 = 0.

• Let X1, X2, · · · be a martingale with |Xn+1 − Xn| ≤ M < ∞. Let C = {limnXn exists and is finite}, D =

{lim supnXn = +∞ and lim infnXn = −∞}. Then P (C ∪D) = 1.

• Second Borel-Cantelli lemma: Let Fn, n ≥ 0 be a filtration with F0 = {∅,Ω} and Bn, n ≥ 1 a sequence of events
with Bn ∈ Fn. Then {Bn i.o.} = {

∑∞
n=1 P (Bn|Fn−1) = ∞}.

• Let µ, ν be two probability measures on (Ω,F ). Let Fn ↑ F be σ-fields. Let µn and νn be the restrictions
of µ and ν to Fn. Suppose µn << νn for all n. Let Xn = dµn/dνn and let X = lim supnXn. Then µ(A) =∫
A
Xdν+µ(A∩{X = ∞}) := µr(A)+µs(A), which gives the Lebesgue decomposition of µ, i.e., µr << ν, µs ⊥ ν.

12
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• Kakutani dichotomy for infinite product measures: Let µ, ν be two probability measures on sequence space
(RN,RN) that make the coordinates ξn(ω) = ωn independent. Let Fn(x) = µ(ξn ≤ x), Gn(x) = ν(ξn ≤ x).
Suppose Fn << Gn and let qn = dFn/dGn > 0, Gn-a.s. Let Fn = σ(ξm : m ≤ n), let µn, νn be the restrictions
of µ and ν to Fn, and let Xn = dµn

dνn
=

∏n
m=1 qm. Then Xn → X, ν-a.s.

∑∞
m=1 log(qm) > −∞ is a tail event,

so the Kolmogorov 0-1 law implies ν(X = 0) ∈ {0, 1} and it follows that either µ << ν or µ ⊥ ν, according as∏∞
m=1

∫ √
qmdGm > 0 or = 0.

4.4 Doob’s Inequality, Convergence in Lp, p > 1

• If Xn is a submartingale and N is a stopping time with P (N ≤ k) = 1, then EX0 ≤ EXN ≤ EXk.

• Doob’s inequality: Let Xm be a submartingale, X̄n = max0≤m≤nX
+
m, λ > 0 and A = {X̄n ≥ λ}. Then

λP (A) ≤ EXn1A ≤ EX+
n .

• Lp maximum inequality: If Xn is a submartingale, then for 1 < p <∞, E(X̄p
n) ≤ ( p

p−1
)pE(X+

n )
p. Consequently,

if Yn is a martingale and Y ∗
n = max0≤m≤n |Ym|, E|Y ∗

n |p ≤ ( p
p−1

)pE(|Yn|p).

• Lp convergence theorem: If Xn is a martingale with supE|Xn|p <∞ where p > 1, then Xn → X a.s. and in Lp.

4.5 Square Integrable Martingales

• In this subsection, we will suppose Xn is a martingale with X0 = 0 and EX2
n <∞ for all n.

• Let X2
n =Mn+An be the Doob decomposition of X2

n. Then Xn is L2-bounded iff EA∞ =
∑∞

n=1 E(Xn−Xn−1)
2 <

∞.

• E(supm |Xm|2) ≤ 4EA∞.

• limn→∞Xn exists and is finite a.s. on {A∞ <∞}.

• Let f ≥ 1 be increasing with
∫∞
0
f(t)−2dt <∞. Then Xn/f(An) → 0 a.s. on {A∞ = ∞}.

• Second Borel-Cantelli Lemma: SupposeBn is adapted to Fn and pn = P (Bn|Fn−1).
∑n

m=1 1B(m)/
∑n

m=1 pm → 1

a.s. on {
∑∞

m=1 pm = ∞}.

• E(supn |Xn|) ≤ 3EA1/2
∞ .

4.6 Uniform Integrability, Convergence in L1

• {Xi}i∈I is uniformly integrable if limM→∞(supi∈I E(|Xi|; |Xi| > M)) = 0.

• Given a probability space (Ω,F0, P ) and an X ∈ L1, then {E(X|F ) : F is a σ-field ⊂ F0} is uniformly
integrable.

• Let ϕ ≥ 0 be any function with ϕ(x)/x → ∞ as x → ∞. If Eϕ(|Xi|) ≤ C for all i ∈ I, then {Xi, i ∈ I} is
uniformly integrable.

• Suppose that E|Xn| <∞ for all n. If Xn → X in probability, then the following are equivalent: (i) {Xn : n ≥ 0}
is uniformly integrable. (ii) Xn → X in L1. (iii) E|Xn| → E|X| <∞.

• For a submartingale, the following are equivalent: (i) It is uniformly integrable. (ii) It converges a.s. and in L1.
(iii) It converges in L1.
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• If a martingale Xn → X in L1, then Xn = E(X|Fn).

• For a martingale, the following are equivalent: (i) It is uniformly integrable. (ii) It converges a.s. and in L1. (iii)
It converges in L1. (iv) There is an integrable random variable X so that Xn = E(X|Fn).

• Suppose Fn ↑ F∞, i.e., Fn is an increasing sequence of σ-fields and F∞ = σ(∪nFn). As n→ ∞, E(X|Fn) →
E(X|F∞) a.s. and in L1.

• Lévy’s 0-1 law: If Fn ↑ F∞ and A ∈ F∞, then E(1A|Fn) → 1A a.s.

4.7 Backwards Martingales

• A backwards martingale is a martingale indexed by the negative integers, i.e., Xn, n ≤ 0, adapted to an increasing
sequence of σ-fields Fn with E(Xn+1|Fn) = Xn for n ≤ −1.

• X−∞ = limn→−∞Xn exists a.s. and in L1.

• If X−∞ = limn→−∞Xn and F−∞ = ∩nFn, then X−∞ = E(X0|F−∞).

• A sequence X1, X2, · · · is said to be exchangeable if for each n and permutation π of {1, · · · , n}, (X1, · · · , Xn) and
(Xπ(1), · · · , Xπ(n)) have the same distribution. IfX1, X2, · · · are exchangeable then conditional on E(exchangeable
σ-field), X1, X2, · · · are independent and identically distributed.

• If X1, X2, · · · are exchangeable and take values in {0, 1}, then there is a probability distribution on [0, 1] so that
P (X1 = 1, · · · , Xk = 1, Xk+1 = 0, · · · , Xn = 0) =

∫ 1

0
θk(1− θ)n−kdF (θ).

4.8 Optional Stopping Theorems

• If Xn is a uniformly integrable submartingale, then for any stopping time N , XN∧n is uniformly integrable.

• If E|XN | <∞ and Xn1(N>n) is uniformly integrable, then XN∧n is uniformly integrable and hence EX0 ≤ EXN .

• If Xn is a uniformly integrable submartingale, then for any stopping time N ≤ ∞, we have EX0 ≤ EXN ≤ EX∞,
where X∞ = limnXn.

• If Xn is a nonnegative supermartingale and N ≤ ∞ is a stopping time, then EX0 ≤ EXN , where X∞ = limnXn.
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