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PROBABILITY THEORY

1 Probability Theory

1.1 Measure space, measurable function, and integration

Definition 1: A collection of subsets of Q,.%, is a o-field (or o-algebra) if (i) The empty set
0 e F; (i) If Ae Z, then the complement A¢ € F; (iii) If A; € F,i=1,2,--, then their union
UA; € 7. (Q,.7) is a measurable space if Z is a o-field on Q.
: ¢ = a collection of subsets of interest. (%) = the smallest o-field containing ¢
(the o-field generated by ). o(€) = € if € itself is a o-field. o({A}) = {0, A, A°,Q}.

: R¥: the k-dimensional Euclidean space (R! = R is the real line). &
= all open sets, € = all closed sets. B* = o(0) = o(%€): the Borel o-field on R¥. C € B* Bo =
{CNB: B e %"} is the Borel o-field on C.

Definition 2: Let (£2,.%#) be a measurable space. A set function v defined on .# is a measure if
(i) 0 < v(A) < oo for any A € .F; (i) v(0) = 0; (iii) If A; € F,i=1,2,---, and A;’s are disjoint, i.e.
A;NA; =0 for any i # j, then v (U2, A;) = Y0 v(A;). (2,7, v) is a measure if v is a measure on
F in (Q, F).

Convention 1: For any x € R, co+ 2 = 00, zoo = o0 if £ > 0, zoo = —o0 if £ < 0. 0co = 0,
00 + 00 = 00, 00* = oo for any a > 0. 0o — 00 or 0o/c0 is not defined.

: (a) Let x € Q be a fixed point and §,(A) =

c ze€A
. This is called a point mass at z. (b) Let .# = all subsets of Q and v(A) = the number

0 z¢ A
of elements in A € .# (v(A) = oo if A contains infinitely many elements). Then v is a measure on
# and is called the counting measure. (c) There is a unique measure m on (R, %), that satisfies
m([a, b]) = b—a for every finite interval [a, b], —0o < a < b < co. This is called the Lebesgue measure.

Proposition 1 (Properties of measures): Let (€,.%#,v) be a measure space. (1) Monotonicity:
If A C B, then v(A) C v(B). (2) Subadditivity: For any sequence Ay, As,---,, v (U2, A4;) <
oo v(A;). (3) Continuity: If Ay C Ay C A3 C -+ (or Ay D Ay D A3 D -+ and v(4;) < ), then
v(lim, o A,) = lim, o v(A4,) where lim, ., A, = U2 A; (or = N2, A4,;).

Definition 3: Let P be a probability measure on (R, Z%). The cumulative distribution function
(c.d.f.) of P is defined to be F(z) = P((—o0,x]), x € R.

Proposition 2 (Properties of c.d.f’s): (i) Let F ' beac.d.f. onR. (a) F'(—o0) = lim,_,_ F(z) = 0;
(b) F(o0) = lim,_, F(x) = 1; (¢) F is nondecreasing, i.e. F(x) < F(y) if x < y; (d) F is right
continuous, i.e. limy_,, 0 F(y) = F(z). (ii) Suppose a real-valued function F' on R satisfies (a)-(d)
in part (i). Then F is the c.d.f. of a unique probability meausre on (R, %).

Definition 4 (Product space): .# = {1,---,k}, k is finite or co. T';,i € &, are some sets.
[Le,Ti=T1x--xTy={(ay,---,ax) :a; €Ty,i € F}. Let (Q4,.%;),i € # be measurable spaces.
o(Il,c.r ) is called the product o-field on the product space [[,c , Q. ([Lics Qio(Il,cr F)) is
denoted by [, , (i, F).

Definition 5 (o-finite): A measure v on (£2,.%#) is said to be o-finite iff there exists a sequence
{A;, Ay, - - } such that UA; = Q and v(4;) < oo for all i. Any finite measure is clearly o-finite. The

Lebesgue measure on % is o-finite.
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Proposition 3 (Product measure theorem): Let (€2, %;,v;),i =1,--- , k, be measure spaces with
o-finite measures. There exists a unique o-finite measure on o-field o(%#; X --- x %), called the
product measure and denoted by vy X - - - X vy, such that vy X - Xy (A X x A) =11 (A1) - - v (Ag)
forall A, € #,i=1,--- k.

Definition 6 (Measurable function): Let (Q,.%) and (A,¥) be measurable spaces. Let f be a
function from Q to A. f is called a measurable function from (Q,.%) to (A,¥) iff f~1(¥) C 7.

Definition 7 (Integration): (a) The integral of a nonnegative simple function ¢ w.r.t.v is defined
as [¢dv = Y. a;v(A;). (b) Let f be a nonnegative Borel function and let .#; be the collection
of all nonnegative simple functions satisfying ¢(w) < f(w) for any w € Q. The integral of f w.r.t.
v is defined as [ fdv = sup{ [ ¢dv : ¢ € .#;} (Hence, for any Borel function f > 0, there exists
aa sequence of simple functions ¢q, ¢, -+ such that 0 < ¢; < f for all ¢ and lim,_, [ ¢, dv =
| fdv). (c) Let f be a Borel function, f;(w) = max{f(w),0} be the positive part of f, and f_(w) =
max{—f(w),0} be the negative part of f. We say that [ fdv exists if and only if at least one of
[ f+dv and [ f_dv is finite, in which case [ fdv = [ fidv — [ f_dv. (d) When both [ fidv and
| f-dv are finite, we say that f is integrable. Let A be a measurable set and I be its indicator
function. The integral of f over A is defined as [, fdv = [I4fdv.

: For convenience, we define the integral of a measurable f from

(Q,.F,v) to (R, %), where R = RU {—o00, +00}, B = (% U {o0,—o0}). Let A, = {f = oo} and

~={f=—oco}. Ifv(A;) =0, we define [ fidv to be [Iac fidv; otherwise [ fidv =oco. [ f_dv

is similarly defined. If at least one of [ fidv and [ f_dv is finite, then [ fdv = [ fidv — [ f_dv is
well defined.

1.2 Integration theory and Radon-Nikodym derivative

Proposition 1: (2,.%,v) be a measure space and f and g be Borel functions. (i) If f < g a.e.,

then [ fdv < [ gdv, provided that the itegrals exist. (ii) If f > 0 a.e. and [ fdv =0, then f =0 a.e.

: Let f1, fo, - be a sequence of Borel functions on (2, .%,v). (i) Fatou’s lemma: If f,, >

0, then [liminf, f,dv <liminf, [ f,dv. (ii) Dominated convergence theorem: If lim,_,, f,, = [ a.e.

and |f,| < g a.e. for integrable g, then [lim, . f,dv = lim,_, [ f,dv. (iii) Monotone convergence

theorem: If 0 < f; < fo < -+ and lim,,_,o fn, = f a.e., then flimnﬁoo fndv = lim,, . ffndy.

: Let (2,.#,v) be a measure space

and, for any fixed 6 € R, let f(w, ) be a Borel function on 2. Suppose that Jf(w,8)/06 exists a.e.

for 6 € (a,b) C R and that |0f(w,d)/00] < g(w) a.e., where g is an integrable function on Q. Then
for each 6 € (a,b), 0f(w,6)/08 is integrable and, by Theorem 1(ii), <% [ f(w,0)dv = [ Wdy.

: Let f be measurable from (2, .#,v) to (A,¥) and g be Borel
on (A,9). Then [,go fdv = [, gd(vo f7'), i.e., if either integral exists, then so does the other, and
the two are the same.

: Let v; be a o-finite measure on (€;,.%;),i = 1,2, and f be a Borel
function on ]_[z (8, F;) with f >0 or f | fldvy X vy < 00. Then g(ws) = fQ (w1, ws)dr exists a.e.

vy and defines a Borel function on 2, whose integral w.r.t. v, exists, and foQ flwi,wa)dvy X vy =
sz fQ (w1, wo)dvy]dvs.
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Definition 1 (Absolutely continuous): Let A and v be two measures on a measurable space
(Q, #,v). We say A is absolutely continuous w.r.t. v and write A << v iff ¥v(A) = 0 implies
AA) =0.
: Let v and X be two measure on (2, .#) and v be o-finite.
If A << v, then there exists a nonnegative Borel function f on € such that A(A) = fA fdv, A e F.
Furthermore, f is unique a.e. v, i.e. if A\(A) = fA gdv for any A € % then f = g a.e. v.

: A continuous c.d.f. may not have a p.d.f. w.r.t. Lebesgue measure. A necessary
and sufficient condition for a c.d.f. F having a p.d.f. w.r.t. Lebesgue measure is that F' is absolute
continuous in the sense that for any € > 0, there exists a 6 > 0 such that for each finite collection of
disjoint bounded open intervals (a;,b;), > (b; — a;) < ¢ implies Y [F(b;) — F(a;)] < €.

Proposition 2 (Calculus with Radon-Nikodym derivatives): Let v be a o-finite measure on a
measure space (€0,.%). (i) If X is a measure, A << v, and f > 0, then [ fd\ = [ f2dv. (ii) If

Ai,t = 1,2, are measures and \; << v, then A\; + Ay << v and W = dd—’\yl + % a.e. v. (iii) If
dr __ dt d\

7 is a measure, A is a o-finite measure, and 7 << A << v, then 9L = 9-92 a.e. v. In particular, if

A << wvand v << A (in which case A and v are equivalent), then % = (%)~! ae. v or A. (iv) Let

(Q4,-Z:,v;) be a measure space and v; be o-finite, i« = 1,2. Let \; be a o-finite measure on (Q,.%;)

. d(A X\ dx dx
and \; << v;,4=1,2. Then A\ X Ay << 1y X 1y and d((yiiyj)) (wi,ws) = d—yll(wl)d—l;(wz) a.e. v X Us.

1.3 Densities, moments, inequalities, and generating functions

: Let X be a random variable on (2, .#, P) whose c.d.f. Fx has a Lebesgue p.d.f. f,
and F,(c) < 1, where c is a fixed constant. Let Y = min{X,c}. Note that Y ~!((—o0, X]) = Q if
x> cand Y }((—o00,z]) = X1 ((—o00,2]) if z < c¢. Hence Y is a random variable and the c.d.f. of

1 T>c
Y is Fy(z) = N . This c.d.f. is discontinuous at ¢, since F,(c) < 1. Thus, it does

Fx(z) z<c
not have a Lebesgue p.d.f. It is not discrete either. Does Py, the probability measure corresponding

to Fy, have a p.d.f. w.r.t. some measure? Consider the point mass probability measure on (R, %) :

1 ceA
§o(A) = ,A € B. Then Py << m + 4., and the p.d.f. of Py is fy(z) = ¥ (2) =

0 cdA d(m+4.)

0 T >c
1—Fx(c) z=c . Toshow this, it suffices to show that f(_(xw] fr(@t)d(m + 6.) = Py ((—o0,z])
fx(x) x<c
for any x € A.

Proposition 1 (Transformation): Let X be a random k-vector with a Lebesgue p.d.f. fx and
let Y = g(X), where g is a Borel function from (R¥, #*) to (R¥, #'). Let A;,---, A, be disjoint
sets in A% such that Z* — (A, U---U A,,) has Lebesgue measure 0 and g on A; is one-to-one with
a nonvanishing Jacobian, i.e., the determinant Det(dg(x)/0z) # 0 on A;,5 = 1,---,m. Then Y
has the following Lebesgue p.d.f.: fy(z) = 77, [Det(0h;(z)/0x)|fx (hj(z)), where h; is the inverse
function of gon A4;,5j =1,--- ,m.

: Let X3 and X, be independent random variables having the chi-
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square distributions x2 and x2_, respectively. One can show that the p.d.f. of Y = (X;/n1)/(X2/n2)
is the p.d.f. of the F-distribution F,, ,,.

: Let Uy be a random variable having the standard normal distribution
N(0,1) and U, a random variable having the chi-square distribution x%. One can show that if U;
and Uj are independent, then the distribution of T'= U;/ \/m is the t-distribution ¢,,.

: Let Xq,---,X,, be independent random vari-
ables and X; ~ N(p;,0?). The distribution of Y = (X7 + -+ + X2)/o? is called the noncentral
chi-square distribution and denoted by x2(8), where 6 = (u? + --- + p2)/o? is the noncentrality
parameter. If Y7, .- Y} are independent random variables aand Y; has the noncentral independent
chi-square distribution Xf”(&-),i =1,---,k, then Y = Y; + --- + Y}, has the noncentral chi-square
distribution x2 | ., (01 +--- 4 dx).

Definition 1 (Moments): If EXF is finite, where k is a positive integer, EX" is called the k-th
moment of X or P,. If E|X|* < oo for some real number a, E| X |* is called the a-th absolute moment of
X or Px. If 4 = EX, E(X —p)* is called the k-th central moment of X or Px. Var(X) = E(X -EX)?
is called the variance of X or Px. For random matrix M = (M;;), EM = (EM,;). For random vector
X, Var(X) = E(X —EX)(X —EX)T is its covariance matrix, whose (i, j)-th element, i # j, is called
the covariance of X; and X; and denoted by Cov(X;, X,). If Cov(X;, X;) =0, then X; and X; aare
said to be uncorrelated. Independence implies uncorelation, not converse. If X is random and c is
fixed, then E(c” X) = ¢"E(X) and Var(c' X) = ¢ Var(X)c.

Definition 2 (Moment generating and characteristic functions): Let X be a random k-vector.
(i) The moment generating function (m.g.f.) of X or Px is defined as ¥x(t) = Eet' Xt € R*.
(ii) The characteristic function (ch.f.) of X or Px is defined as ¢x(t) = Ee'' X = E[cos(tTX)] +
iE[sin(t? X)], ¢t € RF.

Proposition 2 (Properties of m.g.f. and ch.f.): If the m.g.f. is finite in a neighborhood of
0 € R¥, then (i) moments of X of any order are finite; (ii) ¢x(¢) can be obtained by replacing
tin Yx(t) by it. IfY = ATX + ¢, where A is a k x m matrix and ¢ € R™, then ¢y (u) =
e ") (Au) and ¢y (u) = € “¢x (Au),u € R™. For independent X, --- , X, Uy x, (t) = [1; ¥x,(t)
and ¢s x, (t) =[], ¢x,(t),t € R*. For X = (X1, , X)) with m.g.f. ¥x finite in a neighborhood of

0, Wgt(t) li—o = EX, 82f£§t) li—o = E(XXT). HE|X]* - - XF| < oo for nonnegative integers 1, -, ry,
2
then 6¢gt(t) |t:0 = ’LEX, aafTth"t)h:O = —E(XXT)

: Let X and Y be random k-vectors. (i) If ¢x (t) = ¢y (t) for all t € R¥,
then Px = Py; (2) If ¥x(t) = ¢y (t) < oo for all ¢ in a neighborhood of 0, then Px = Py-.

1.4 Conditional expectation and independence

Definition 1: Let X be an integrable random variable on (Q,.%#, P). (i) The conditional expec-
tation of X given &7 (a sub-o-field of %), denoted by E(X|<7), is the a.s. unique random variable
satisfying the following two conditions: (a) E(X|.<f) is a measurable from (£2,97) to (R, %); (b)
[LE(X|«)dP = [, XdP for any A € /. (ii) The conditional probability of B € .# given &/
is defined to be P(B|&/) = E(Ig|%/). (iii) Let Y be measurable from (Q,.%#,P) to (A,%¥). The
conditionala expectation of X given Y is defined to be E(X|Y) = E[X|o(Y)].
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: Let Y be measurable from (Q,.%#) to (A,¥) and Z a function from (£2,.%) to R¥.
Then Z is measurable from (Q,0(Y)) to (R¥, %*) iff there is a measurable function h from (A, %)
such that Z =hoY.

: Let X be an integrable random variable on (Q,.%, P), Ay, As, - - be disjoint events
on (92, .#, P) such that UA; = Q and P(A;) > 0 for all i, and let ay, aq,--- be distinct real numbers.
Define Y = a1la, + azla, + ---. We can show that E(X|Y) =7, L‘I;'(iid)]glm.

Proposition 1: Let X be a random n-vector and Y a random m-vector. Suppose that (X,Y")
has a joint p.d.f. f(z,y) wrt. v x A, where v and \ are o-finite measures on (R™, ") and
(R™, ™), respectively. Let g(x,y) be a Borel function on R**™ for which E|g(X,Y)| < oo. Then
B, )Y = LIS o

Definition 2 (Conditional p.d.f.): Let (X,Y) be a random vector with a joint p.d.f. f(x,y)
w.r.t. v x A, The conditional p.d.f. of X given Y = y is defined to be fxy(z|y)/fy(y) where
fy(y) = [ f(z,y)dv(z) is the marginl p.d.f. of Y w.r.t. A

Proposition 2: Let X,Y, X1, Xo, -+ be integrable random variables on (2,.#,P) and & be
a sub-o-field of .#. (i) If X = ¢ a.s.,, ¢ € R, then E(X|&/) = c a.s. (ii) If X <Y as., then
E(X|«) < E(Y|«) as. (iii) If a,b € R, then E(aX + bY|o/) = aE(X|/) + bE(Y|%7) a.s. (iv)
E[E(X|e)] = EX. (v) E[E(X|«)|%] = E(X|%%) = E[E(X|o%)|</] a.s., where 7, is a sub-o-field
of &. (vi) If o(Y) C & and E|XY| < oo, then E(XY|&/) = YE(X|o) a.s. (vii) If X and Y are
independent and E|g(X,Y’)| < oo for a Borel function g, then E[g(X,Y)|Y = y| = E[¢(X,y)] a.s. Py.
(viii) If EX? < oo, then [E(X|«)]? < E(X?|«) a.s. (ix) Fatou’s lemma: If X,, > 0 for any n, then
E(liminf, X, |%/) < liminf, E(X,|</) a.s. (x) Dominated convergence theorem: If |X,| <Y for any
n and X,, =, X, then E(X,,|%) —,. E(X|o).

Definition 3 (Independence): Let (€2,.%, P) be a probability space. (i) Let € be a collection of
subsets in .%. Events in % are said to be independent iff for any positive integer n and distinct events
Ay, A, €C, P(A1NAsN---NA,) = P(A1)P(As) - -- P(A,,). (ii) Collections 6; C .#,i € . are
said to be independent iff events in any collection of the form {A; € € : i € #} are independent.

(iii) Random elements X;,i € .#, are said to be independent iff o(X;),7 € .# are independent.
: Let %;,7 € . be independent collections of events. If each %; is a w-system, then
0(6;),i € Z are independent.
Proposition 2: Let X be a random variable with E|X| < oo and let Y; be random k; vectors,
i =1,2. Suppose that (X,Y7) and Y5 are independent. Then E[X|(Y3,Y)] = E(X|Y;) as.
Definition 4 (Conditional independence): Let X,Y, Z be random vectors. We say that given Z,
X and Y are conditionally independent iff P(A|X,Z) = P(A|Z) a.s. for any A € o(Y).

1.5 Convergence modes and relationships

Definition 1 (Convergence modes): Let X, X, X, -+ be a random k-vectors defined on a prob-
ability space. (i) We say that the sequence {X,,} converges to X almost surely and write X,, —,5 X
iff lim,, oo X,, = X a.s. (ii) We say that {X,,} converges to X in probability and write X,, —, X
iff for every fixed € > 0, lim,,_,o, P(||X,, — X|| > €) = 0. (iii) We say that {X,,} converges to X in
L, (or in rth moment) with a fixed r > 0 and write X,, — X iff lim,, o E||X,, — X||I = 0. (iv)
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Let F,F,,n = 1,2,--- be c.d.f’s on R¥ and P,P,,n = 1,2,--- be their corresponding probability
measures. We say that {F,} converges to F' weakly (or {P,} converges to P weakly) and write
F, =, F (or P, —, P) iff, for each continuity point x of F, lim,,_, F,,(x) = F(z). We say that
{X,} converges to X in distribution (or in law) and write X,, —4 X iff Fx, —, Fx.
Proposition 1: If F,, —,, F and F is continuous on R¥, then lim,, o, sup,cge |Fn(z) — F(z)| = 0.
: For random k-vectors X, X, Xo,--- on a probability space, X,, =, X iff for every
€ >0, lim, o P(UX_ {||Xm — X|| >¢€}) =0.

: Let A, be a sequence of events in a probability space and
limsup, A, = N2, U A,,. (1) If 37 P(A,) < oo, then P(liminf, A4,) = 0. (i) If Ay, As,--- re
pairwise independent aaand > - | P(A,) = oo, then P(limsup, 4,) = 1.

Definition 2: Let X, X5, - be random vectors and Y7, Y5, --- be random variables defined on
a common probability space. (i) X,, = O(Y,) a.s. iff P(||X,|| = O(|Y.]) = 1. (ii) X, = o(Y,)
a.s. iff X,,/Y, —as 0. (iii) X, = O,(Y,,) iff, for any € > 0, there is a constant C. > 0 such that
sup,, P(|| X,.|| > C|Y,|) <e. (iv) X,, = 0,(Y,) iff X,,/Y,, —, 0.

: (1) If X, »as X, then X,, —, X. (The converse is not true). (i) If X,, =, X

for an r > 0, then X,, —, X. (The converse is not true). (iii) If X,, —, X, then X,, —4 X.
(The converse is not true). (iv) (Skorohod’s theorem). If X,, —4 X, then there are random vectors
Y,Y1,Ys,--- defined on a common probability space such that Py = Px,Py, = Px, ,n =1,2,---
and Y, —,s Y. (v) If, for every € > 0,> 7, P(||X,, — X|| > €) < oo, then X,, —,, X. (vi) If
X —p X, then there is a subsequence such that X, —.s X as j — oo. (vii) If X,, —4 X and
P(X = ¢) = 1, where ¢ € R¥ is a constant vector, then X,, —, c. (viii) Suppose that X, —4 X.
Then for any r > 0,lim,,_, E|| X, ||} = E||X||] < oo if {||X,||} is uniformly integrable in the sense
that lim;_,e sup,, E(|| X, ||%L{)x.,>43) = 0.

Proposition 2 (Sufficient conditions for uniform integrability): sup,, E||X,|[7*® < co for a § > 0.

Proposition 3 (Properties of the quotient random variables): (i) Suppose X, Xi, X5, - are
positive random variables. Then X,, —. X iff for every ¢ > 0, lim,, ., P(sukan % >1+4¢€) =0,
and lim,, o P(sup;s,, XL;C >14¢€) =0. (ii) Suppose X, X;, X5, --- are positive random variables. If
S P(X,/X>1+¢€) <ocoand >~ P(X/X,>14¢€) < oo, then X,, =, X.

1.6 Uniform integrability and weak convergence

Definition 1 (Tightness): A sequence {P,} of probability measure on (R*, %) is tight if for every
€ > 0, there is a compact set C' C R* such that inf, P,(C) > 1 —e. If {X,,} is a sequence of random
k-vectors, then the tightness of { Px, } is the same as the boundedness of {||X,,||} in probability.

Proposition 1: Let {P,} be a sequence of probability measures on (R*, #%). (i) Tightness of
{P,} is a necessary and sufficient condition that for every subsequence {P,} there exists a further
subsequence {P,,} C {P,} and a probability measure P on (R*, %) such that P,, —,, P as j — cc.
(ii) If {P,} is tight and if each subsequence that converges weakly at all converges to the same
probability measure P, then P, —,, P.

Let

X, X1, Xa,- -+ berandom k-vectors. (i) X,, —4 X is equivalent to any one of the following conditions:
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(a) E[h(X,)] — E[h(X)] for every bounded continuous function h; (b) limsup,, Px, (C) < Px(C) for
any closed set C C R*; (c) liminf, Px,(O) > Px(O) for any open set O C R*. (ii) Lévy-Cramér
continuity theorem. Let ¢x,dx,,dx, be the ch.f’s of X, X;, Xo, -+, respectively. X,, —4 X iff
lim,, 00 ¢x, (t) = ¢x(t) for all t € R*. (iii) Cramér-Wold device. X,, —4 X iff ¢T'X,, —4 T X for
every c € R”.
: Let Xi,---,X, be independent random variables having a common c.d.f. and

T,=X1+ -+ X,,n=1,2,---. Suppose that E|X;| < co. It follows from a result in calculus that
the ch.f. of X, satisfies ¢, (t) = dx, (0) +v/—1ut +o(|t]) as [t| = 0, where u = EX;. Then, the ch.f.
of T,,/nis ¢, /m(t) =[x, (£)]" = [1 + @ +o(L)]" — eVt for any t € R as n — co. eV~ 11t is
the ch.f. of the point mass probability measure at p. Thus T, /n —4 p and T, /n — f.

Proposition 2 (Scheffé’s theorem): Let {f,} be a sequence of p.d.f’s on R* w.r.t. v. Suppose
that lim, . fn(z) = f(2) a.e. and f(z) is a p.d.f. w.r.t. v. Then lim, o [ |fn(z) — f(z)|dv = 0.

1.7 Convergence of transformations and law of large numbers

: Let X, X1, X5, -+ be random k-vectors defined on a
probability space and g be a measure function from (R*, %) to (R!, '). Suppose that g is continuous
a.s. Py. Then (i) X,, —as X implies g(X,) —as 9(X); (ii) X,, —, X implies g(X,) —, g(X); (iii)
X, —q X implies g(X,,) =4 9(X).

: Let X, X1,X5,---,Y7,Y5,--- be random variables on a proba-
bility space. Suppose that X,, =, X and Y,, =, ¢, where c is a constant, where c is a constant. Then
(i) Xp+Y, ¢ X +¢ (i) VX, =g cX; (iii) X,,/Y, —¢ X/cif c#£0.

: Let Xy, X5, -+ and Y = (Y3, ,Y%) be random k-vectors satisfying a,, (X, —¢) —q4
Y, where ¢ € R¥ and {a,} is a sequence of positive numbers with lim, ,, a, = co. Let g be a
function from R¥ — R. (i) If ¢ is differentiable at ¢, then a,[g(X,) — g(c)] =4 [Vg(c)T]Y, where
Vg(z) denotes the k-vector of partial derivatives of g at x. (ii) Suppose that g has continuous
partial derivatives of order m > 1 in a neighborhood of ¢, with all the partial derivatives of order
7, 1 <7 <m — 1, vanishing at ¢, but with the mth-order partial derivatives not all vanishing at c.
Then a;}[9(Xn) = 9(€)] =a 1 Ypr Lot ot Gt la=eYiy - Yo

If Y has the N (0,%) distribution, then a,[g(X,) — g(c)] —4
N (0, [V(e)]TSVg(c)).

: Let Xy, X5, -+ beii.d. random variables. (i) The WLLN. A necessary and sufficient
condition for the existence of a sequence of real numbers {a,} for which £ >>"" | X; —a, —, 0 is that
nP(|X:| > n) — 0, in which case we may take a,, = E(X;1{x,|<n})- (ii) The SLLN. A necessary and
sufficient condition for the existence of a constant ¢ for which % Yot Xy —as. cis that E|X;| < oo,
in which case ¢ = EX; and %2?21 ¢i(X; —EX1) —as 0 for any bounded sequence of real numbers
{ci}-

: Let X1, X5, -+ be independent random variables with finite expectations. (i) The
SLLN. If there is a constant p € [1,2] such that 302, ®X0° < oo then 157" (X, — EX,) —as
0. (ii) The WLLN. If there is a constant p € [1,2] such that lim, o & >7" | E|X;|? = 0, then
5 i (Xi —EX;) =, 0.
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1.8 The central limit theorem

: Let {X,,;,j =1,--- ,k,} be independent random variables with

k, — o0 asn — oo and 0 < o2 = var(Z?;anj) < oo,m = 1,2,---. If %%ZfillE[(an —
EXj)*I{1X,;~EX | >0n}] — 0 for any € > 0, then - Z?L(an —EX,;) -4 N(0,1).
: For i.i.d. random k-vectors Xi,---,X, with a finite ¥ =

VaI'(X1>, ﬁ Z:’L:l(Xi — EXl) —d Nk(o, E)

: Foriid. {X,}and W, = /n(X—p)/o, sup, |Fw, (t)—¢(t)|
1/2.

IN

3
%%, n =1,2,---. Thus, the convergence speed of Fy,, to ¢ is of the order n~

2 Fundamentals of Statistics

2.1 Models, data, statistics, and sampling distributions

Definition 1: A set of probability measures Py on (£2,.#) indexed by a parameter 6 € © is said
to be a parametric family or follow a parametric model iff © C R? for some fixed positive integer
d and each Py is a known probability measure when 6 is known. The set © is called the parameter
space and d is called its dimension. & = {Py : § € O} is identifiable iff §; # 6 and §; € © imply
Py, # Py,, which may be achieved through reparameterization.

Definition 2 (Dominated family): A family of populations & is dominated by v (a o-finite
measure) if P << v for all P € &, in which case & can be identified by the family of densities
{%:PE@}M{%:HG@}.

Definition 3 (Exponential families): A parametric family {Py : 6 :€ O} dominated by a o-finite
measure v on ({2, F) is called on an exponential family iff 22 (w) = exp{[n(6)]" T (w) —£(0) }h(w),w €
Q where £(0) = log{ [ exp{[n(0)]"T(w)}h(w)dv(w)}. In an exponential family, consider the param-
eter n = n(0) and f,(w) = exp{n? T'(w) — ¢(n)}h(w),w € Q. This is called the canonical form for the
family, and 2 = {n : {(n) is defined} is called the natural parameter space. An exponential family
in canonical form is a natural exponential family. If there is an open set contained in the natural
parameter space of an exponential family, then the family is said to be of full rank.

: Let & be a natural exponential family. (i) Let 7= (Y,U) and n = (0, ¢), Y and 6
have the same dimension. Then, Y has the p.d.f. f,(y) = exp{6#Ty — ((n)}. In particular, T has a
p.d.f. in a natural exponential family. Furthermore, the conditional distribution of Y given U = u
has the p.d.f. fp.(y) = exp{6Ty—(.(0)} w.r.t. a o-finite measure depending on ¢. Furthermore, the
conditional distribution of Y given U = u has the p.d.f. f5.(y) = exp(67y — (,(0)) w.r.t. a o-finite
measure depending on u. (ii) If 7y is an interior point of the natural parameter space, then the m.g.f.
of P,, oT~! is finite in a neighbbrhood of 0 and is given by ¢, (t) = exp{{(no + t) — {(n0)}-

Definition 4 (Location-scale families): Let P be a known probability measure on (R*, B%), ¥ C
R*, and ), be a collection of k x k symmetric positive definite matrices. The family {P, s : 1 €
Y, ¥ € M} is called a location-scale family (on R¥), where P, s(B) = P(S~Y23(B — y)), B € #*.
The parameters 1 and $'/2 are called the location and scale parameters, respectively.

Definition 5 (Statistics and their sampling distributions): Our data set is a realization of a sample

10
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(random vector) X from an unknown population P. Statistic 7'(X): A measurable function T of X;
T(X) is a known value whenever X is known. A nontrivial statistic T'(X) is usually simpler than X.
Finding the form of the distribution of T' is one of the major problems in statistical inference and
decision theory.

: Let X1,---,X, beiid. random variables having a common distribution P. The
sample mean and sample variance X = £ 3" | X; 52 = -5 (X; — X)? are two commonly used
statistics.

: Let X = (Xy,---,X,) with i.i.d. random components. Let X
be the ith smallest value of X;,---,X,,. The statistics X(1),---, X(,) are called the order statistics.

2.2 Sufficiency and minimal sufficiency

Definition 1 (Sufficiency): Let X be a sample from an unknown population P € &, where & is
a family of populations. A statistic T'(X) is said to be sufficient for P € & iff conditional distribution
of X given T is known.

: Suppose that X is a sample from P € & and & is
a family of probability measures on (R", %") dominated by a o-finite measure v. Then T(X) is
sufficient for P € & iff there are nonnegative Borel functions h and g, on the range of 1" such that
42 () = g,(T(@))h(x).

: If a family & is dominated by a o-finite measure, then &2 is dominated by a
probability measure Q = Y .°, ¢;P;, where ¢;’s are nonnegative constants with > ° ¢ = 1 and
Pec 2.

Convention 1: If a statement holds except for outcomes in an event A satisfying P(A) = 0 for
all P € &, then we say that the statement holds a.s. &2.

Definition 2 (Minimal sufficiency): Let T' be a sufficient statistic for P € . T is called a
minimal sufficient statistic iff, for any other statistic S sufficient for P € &2, there is a measurable
function ¢ such that "= ¢(S) a.s. <.

: Minimal sufficient statistics exist when &2 contains
distributions on R* dominated by a o-finite measure. If both 7" and S are minimal sufficient statistics,
then by definition there is one-to-one measurable function ¢ such that 7' = ¢(S) a.s. <.

: Let & be a family of distributions on R*. (i) Suppose that &2, C £ and a.s.
Py implies a.s. . If T is sufficient for P € & and minimal sufficient for P € &, then T is
minimal sufficient for P € &2. (ii) Suppose that & contains p.d.fs fo, f1, f2, - w.r.t. a o-finite
v. Let foo(z) = Y 1o cifi(z), where ¢; > 0 for all i and Y ;= ¢; = 1, and let Tj(z) = f;(z)/ foo(x)
when foo(z) > 0,i = 0,1,2,---. Then T(x) = (To,T1,Ts,---) is minimal sufficient for P € Z.
Furthermore, if {z : f;(x) > 0} C {z : fo(z) > 0} for all 4, then we may replace fo(z) for fo(z), in
which case T'(z) = (T1, T3, - - - ) is minimal sufficient for P € &. (iii) Suppose that & contains p.d.f’s
fp w.r.t. a o-finite measure and that there exists a sufficient statistic 7'(x) such that, for any possible
values x and y of X, f,(x) = f,(y)¢(z,y) for all P implies T'(x) = T'(y), where ¢ is a measurable
function. Then 7T'(z) is minimal sufficient for P € Z.

11
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2.3 Completeness

Definition 1 (Ancillary statistics): A statistic V' (z) is ancillary iff its distribution does not depend
on any unknown quantity. A statistic V(X)) is first-order ancillary iff E[V(X)] does not depend on
any unknown quantity.

Remark 1: If V(z) is a non-trivial ancillary statistic, then o(V') does not contain any information
about the unknown population P. If T'(x) is a statistic and V(T'(x)) is a non-trivial ancillary statistic,
it indicates that the reduced data set by T contains a non-trivial part that does not contain any
information about 6 and, hence, a further simplification of 7" may still be needed.

Definition 2 (Completeness): A statistic T'(x) is complete (or boundedly complete) for P € &
iff, for any Borel f (or bounded Borel f), E[f(T)] = 0 for all P € & implies f =0 a.s. <.

Remark 2: If T' is complete (or boundedly complete) and S = ¢ (T) for a measurable v, then S is
complete (or boundedly complete). A complete and sufficient statistic should be minimal sufficient.
But a minimal sufficient statistic may be not complete.

Proposition 1: If P is in an exponential family of full rank with p.d.f’s given by f,(z) =
exp{nTT(z) — ((n)}h(z), then T(x) is complete and sufficient for n € Z.

: Suppose that Xi,---, X, are i.i.d. random variables having the N (i, c?) distribu-
tion, p € R, ¢ > 0. The joint p.d.f. of Xy, -+, X, is (27) 2 exp{mT1 + n2T> — n{(n)}, where
Ty =30 Xi,To =—=>7 X2 and n = (m,n) = (%, 5). Hence, the family of distributions for
X = (Xy, -+, X,) is a natural exponential family of full rank (£ = Rx (0, 00)). Thus T(X) = (11, T»)
is complete and sufficient for 7.

T(xz) = (X@), - ,X@n)) of iid. random variables Xi,---,X, is sufficient for
P e &, where & is the family of distributions on R having Lebesgue p.d.f’s. We can show that
T'(x) is also complete for P € Z.
: Let V and T be two statistics of X from a population P € &. If
V is ancillary and T is boundedly complete and sufficient for P € &, then V and T are independent
w.r.t. any P € &,

: X4, , X, is a random sample from uniform(#,0 +1), 0 € R, and T = (X (1), X(n))
is the minimal sufficient statistic for 6. We can show that T is not complete.

: Suppose that S is a minimal sufficient statistic and T is a complete and sufficient

statistic. Then 7" must be minimal sufficient and S must be complete.

2.4 Statistical decision

Convention 1 (Basic elements): X: a sample from a population P € &. Decision: an action we
take after observing X. .o7: the set of allowable actions. (&7,.%,): the action space. Z: the range
of X. Decision rule: a measurable function T from (2", 4 ) to (&7, %.). If X = x is observed,
then we take the action T'(z) € <7

Definition 1 (Loss function): L(P,a): a function from & x &/ to [0,00). L(P,a) is Borel for
each P. If X = z is observed and our decision rule is 7', then our loss is L(P,T(z)).

Definition 2 (Risk): The averaged loss Ry (P) := E[L(P,T(X))] = [, L(P,T(X))dPx (z).

12
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Definition 3 (Comparisons): For decision rules T} and T5, T} is as good as Ty iff Ry, (P) < Ry, (P)
for any P € & and is better than T5 if, in addition, Ry, P < Rp,(P) for some P. Ty and T; are
equivalent iff Ry, (P) = Rp,(P) for all P € &2. Optimal rule: If T* is as good as any other rule in
&, a claass of allowable decision rules, then T™* is &-optimal.

Definition 4 (Randomized decision rules): A function 6 on 2 x F.; for every A € Fy,
d(-,A) is a Borel function and, for every x € 27, §(z,-) is a probability measure on (&, % ).
If X = x is observed, we have a distribution of actions: d(z,-). A nonrandomized rule T is a
special randomized decision rule with 6(z,{a}) = I{,}(T()),a € o/, € Z . The loss function for
a randomized rule ¢ is defined as L(P,d,z) = [, L(P,a)dd(x,a), which reduces to the same loss
function when § is nonrandomized. The risk of a randomized § is then Rs(P) = E[L(P,§,X)] =
Jo [, L(P,a)dé(z, a)dPx (x).

: X = (Xy,--+,X,) is a vector of i.i.d. measurements for a parameter § € R. We
want to estimate 6. Action space: (&7, %) = (R, #). A common loss function in this problem is
the squared error loss L(P,a) = (§ — a)?,a € «/. Let T(X) = X, the sample mean. The loss for
X is (X — 6)2. If the population has mean p and variance 02 < oo, then Rg(P) = (u — 0)? +
This problem is a special case of a general problem called estimation. In an estimation problem, a
decision rule T is called an estimator.

Let & be a family of distributions, &y, ¢ &, ¥, = {P € & : P ¢ Py}.
A hypothesis testing problem can be formulated as that of deciding which of the following two
statements is true: Hy : P € & versus H, : P € &,. Hj is called the null hypothesis and H;
is the alternative hypothesis. The action space for this problem contains only two elements, i.e.,
o/ = {0,1}, where 0 is accepting Hy and 1 is rejecting Hy. This problem is a special case of a general
problem called hypothesis testing. A decision rule is called a test, which msut have the form I (X),
where C € % 4 is called the rejection or critical region.

Definition 5 (0-1 loss): L(P,a) = 0 if a correct decision is made and 1 if an incorrect decision is
PT(X)=1)=P(XeC) Pe P
P(T(X)=0)=P(X ¢C) Pe P

Definition 6 (Admissibility): Let & be a class of decision rules. A decision rule T' € & is called
&-admissible iff there does not exist any S € & that is better than 7" (in terms of the risk).

made, which leads to the risk Ry (P) =

Remark 1: An admissible decision rule is not necessarily good. For example, in an estimation
problem a sﬂly estimator T'(X) = a constant may be admissible.

Proposition 1: Let T'(X) be a sufficient statistic for P € &2 and let dy be a decision rule. Then
01(t, A) = E[6o(X, A)|T = t], which is a randomized decision rule depending only on T, is equivalent
to g if Rs,(P) < oo for any P € &.

: Suppose that &7 is a convex subset of R¥ and that for any P € &, L(P,a) is a
convex function of a. (i) Let J be a randomized rule satisfying [ ||a||dd(z,a) < oo for any x € 2
and let Ti(z) = [ addé(x,a). Then L(P,Ti(x)) < L(P,6,z) (or L(P,Ty(x)) < L(P,0,x)) if L is
strictly convex in a for any x € 2" and P € Z. (ii) Rao-Blackwell theorem. Let T" be a sufficient
statistic for P € &, Ty € R* be a nonrandomized rule satisfying E||Ty|| < oo, and T} = E[Ty(X)|T].
Then Ry, (P) < Ry, (P) for any P € &. If L is strictly convex in a and Ty is not a function of T,

13
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then Ty is inadmissible.

Definition 7 (Unbiasedness): In an estimation problem, the bias of an estimator T'(X) of a
parameter 6 of the unknown population is defined to be by (P) = E[T(X)] — 0. An estimator T'(X)
is unbiased for 6 iff by (P) = 0 for any P € Z.

Approach 1: Define a class & of decision rules that have some desirable properties and then try
to find the best rule in &.

Approach 2: Consider some characteristic Ry of Ry (P), for a given decision rule 7', and then

minimize Rt over T € &. Methods include the Bayes rule and the minimax rule.

2.5 Statistical inference

Definition 1 (Three components in statistical inference): Point estimators, hypothesis tests,
confidence sets.

Definition 2 (Point estimators): Let T'(X) be an estimator of § € R. Bias: bp(P) = E[T(X)] —#.
Mean squared error (mse): mser(P) = E[T(X) — 6]? = [br(P)]? + Var(T(X)). Bias and mse are two
common criteria for the performance of point estimators, i.e., instead of considering risk functions,
we use bias and mse to evaluate point estimators.

Definition 3 (Hypothesis tests): To test the hypotheses Hy : P € &, versus Hy : P € &7, there
are two types of errors we may commit: rejecting Hy when Hj is true (called the type I error) and
accepting Hy when Hj is wrong (called the type II error). A test T": a statistic from 2" to {0,1}.

: Type I error rate: ar(P) = P(T(X) =

1), P € Hy. Type Il error rate: 1 — arp(P) = P(T(X)=0),P € &. ar(P) is also called the power
function of T'. Power function is ar(f) if P is in a parametric family indexed by 6.

: Let Xy, -+, X, beiid. from the N (i, o?) distribution with an unknown p € R and

a known o2. Consider the hypotheses Hy : u < po versus Hy : p > jig, where pi is a fixed constant.

Since the sample mean X is sufficient for p € R, it is reasonable to consider the following class of

tests: To(X) = I(¢0)(X). By the property of the normal distributions, ar, () = P(T.(X) = 1) =

1_ ¢)< ﬁ(;—u) \/ﬁ(i—#o))

). Since ¢(t) is an increasing function of ¢, suppc 5, ar. (1) = 1 — ¢( . In fact,

\/ﬁ(c—uo))

it is also true for suppez, [1 — ar, (1)) = ¢( . If we woudl like to use an « as the level of

significance, then the most effective way is to choose a c, such that a = suppc 5, @z, (1), in which

M) = q, i.e., ¢y = 021_o/\/+ g, where z, = ®~1(a). It can be

case ¢, must satisfy 1 — ¢(
shown that for any test 7'(X) satisfying suppc g, ar(P) < o, 1 —ap(p) > 1 —ag, (1), 1 > po-

Definition 4 (Significance tests): A common approach of finding an “optimal” test is to assign a
small bound « to the type I error rate ar(P), P € &y, and then to attempt to minimize the type
IT error rate 1 — arp(P), P € &, subject to suppc 5, ar(P) < a. The bound « is called the level of
significance. The left-hand side is called the size of the test T. The level of significance should be
positive, otherwise no test satisfies.

Definition 5 (p-value): It is good practice to determine not only whether Hy is rejected for a
given a and a chosen test T,, but also the smallest possible level of significance at which Hy would
be rejected for the computed T, (), i.e., & = inf{a € (0,1) : T, (x) = 1}. Such an &, which depends

on z and the chosen test and is a statistic, is called the p-value for the test T,.
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: Let us calculate the p-value for T, in Example 1. Note that « =1 — gb(w) >
1- @(@) if and only if X > ¢, (or T, (x) = 1). Hence, 1 — qﬁ(@) = inf{a € (0,1) :
T..(x) = 1} = &(X) is the p-value for T¢ . It turns out that T, (z) = I(,q)(G(X)).

Definition 6 (Confidence sets) #: a k-vector of unknown parameters related to the unknown
P e &. 1If a Borel set C(X) (in the range of ) depending only on the sample X such that
infpep P(6 € C(X)) > 1 — a, where « is a fixed constant in (0, 1), then C(X) is called a confidence
set for 6 with level of significance 1 — a. The left-hand side is called the confidence coefficient of
C(X), which is the highest possible level of significance for C(X). A confidence set is a random
element that covers the unknown 6 with certain probability.

: Let Xq,--+, X, beiid. from the N(u,o?) distribution with both p € R and o2 > 0
unknown. Let § = (u,0?) and a € (0,1) be given. Let X be the sample mean and S? be the
sample variance. Since (X, S?) is sufficient, we focus on C(X) that is a function of (X, S?). Since
V(X =) /o has the N'(0, 1) distribution, P(—¢, < £=£ < ¢,) = v/T — @, where ¢, = @‘1(@).

a/Vn
Since the x? distribution distribution x2_, is a known distribution, we can always find two constants

C1o and ¢y, such that P(c, < ("_0712)52 < ¢30) = V1 —a. Then P(—¢, < f/?/’% < CoyCla <
(n—1

072)32 < ¢34) = 1 — a. The LHS defines a set in the range of § = (u, %) bounded by two straight

lines,0? = (n — 1)5?/¢in,i = 1,2, and a curve 0? = n(X — p)?/c%. This set is a confidence set for 6

with confidence coefficient 1 — a.

Definition 7 (Randomized tests): Since the action space contains only two points, 0 and 1, for
a hypothesis testing problem, any randomized test §(X, A) is equivalent to a statistic 7(X) € [0, 1]
with T'(z) = d(x,{1}) and 1 — T(X) = §(z,{0}). A nonrandomized test is obviously a special
case where T'(z) does not take any value in (0,1). For any randomized test T'(X), we define the
type I error probability to be ar(P) = E[T(X)],P € &, and the type II error probability to be
1—ar(P)=E[l-T(X)],P € &. For a class of randomized tests, we would like to minimize
1 — ap(P) subject to suppe 5, ar(P) = a.

Definition 8 (Consistency of point estimators): Let X = (Xy,---, X,,) be a sample from P € &,
T,,(X) be an estimator of 6 for every n, and {a,} be a sequence of positive constants, a,, — co. (i)
T, (z) is consistent for 8 iff T, (z) —, 6 w.r.t. any P. (ii) T},(x) is a,-consistent for 6 iff a,,[T;,(X)—0] =
O,(1) w.r.t. any P. (iii) T;,(x) is strongly consistent for 6 iff T),(x) —.s 6 w.r.t. any P. (iv) T,,(X)
is L,-consistent for 6 iff T,,(x) —, 6 w.r.t. for any P for some fixed r > 0; if » = 2, Lo-consistency
is called consistency in mse.

Remark 1 (Consistency is an essential requirement): Like the admissibility, consistency is an
essential requirement: any inconsistent estimators should not be used, but there are many consistent
estimators and some may not be good. Thus, consistency should be used together with other criteria.

Remark 2 (Approximate and asymptotic bias): Unbiasedness is a criterion for point estimator.
In some cases, however, there is no unbiased estimator. Furthermore, having a “slight” bias in some
cases may not be a bad idea.

Definition 9: (i) Let &,&;, s, - - - be random variables and {a,,} be a sequence of positive numbers
satisfying a,, — oo or a,, — a > 0. If a,§, —4 & and E[§| < oo, then E{/a,, is called an asymptotic

expectation of &,. (ii) For a point estimator T,, of f, an asymptotic expectation of T, — 0, if it exists,
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is called an asymptotic bias of T}, and denoted by by, (P). If lim,,_,« bz, (P) = 0 for any P, then T,
is asymptotically unbiased.

Proposition 1 (Asymptotic expectation is essentially unique): For a sequence of random variables
{&.}, suppose both E¢/a, and En/b, are asymptotic expectations of &,. Then, one of the following
three must hold: (a) E§ = En = 0; (b) E§ # 0,En = 0, and b, /a, — 0; (¢) E§ # 0,En # 0, and
(E¢/an)/(En/by) — 1.

We consider the case where Xi,---,X, are i.i.d.
random k-vectors with finite = Var(X;),T;, = g(X), where g is a function on R¥ that is second-
order differentiable at © = EX;. Consider T,, as an estimator of § = g(u). By Taylor’s expansion,
T,—0 = [Vg()]" (X —p)+27 (X — )" Vg (1) (X —p)+0,(n~"). By the CLT, 27 'n(X —p) V2g(u) (X —
w) —q 2712EV2g(u) Zs,, where Zs, = N3(0,%). Thus, E[ng;gl(“)ZZ] = tr(vzgn(”)z) is the n~! order

asymptotic bias of T,, = g(X).

Definition 10 (Asymptotic variance and amse): Let T, be an estimator of 6 for every n and {a, }
be a sequence of positive numbers satisfying a,, — oo or a,, — a > 0. Assume that a,(T,, —0) =4 Y
with 0 < EY? < co. (i) The asymptotic mean squared error of T}, denoted by amser, (P), is
defined as the asymptotic expectation of (T}, — 0)?, amser, (P) = EY?/a?. The asymptotic variance
of T,, is defined as o7 (P) = Var(Y)/a2. (ii) Let T, be another estimator of §. The asymptotic
relative efficiency of T, w.r.t. T, is defined as e 1, = amser, (P)/amser, (P). (iii) T}, is said to be
asymptotically more efficient than 7}, iff limsup,, ez, 1, (P) < 1 for any P and < 1 for some P.
Proposition 2: Let T,, be an estimator of 6 for every n and {a,} be a sequence of positive
numbers satisfying a, — oo or a, — a > 0. If a, (T, — ) —; Y with 0 < EY? < oo, then (i)
EY? < liminf, E[a?(T,, — 0)?] and (ii) EY? = lim,,_, E[a?(T,, — 0)?] if and only if {a2(T,, — 0)*} is
uniformly integrable.
: Let Xq,---, X, beiid. from the Poisson distribution P(#) with an unknown 6 > 0.
Consider the estimation of § = P(X; = 0) = e~Y. Let T}, = F,,(0), where F, is the empirical c.d.f.
Then T}, is unbiased and has mser,, (0) = e~ %(1 —e~?)/n. Also, /n(Ti, —0) =4 N(0,e (1 —e~?))
by the CLT. Thus, in the case amser, () = mser, (6). Consider Ty, = e X. Note that ETy, =
e =1 hence nbr,, (6) — B¢~ /2. Using the CLT, we can show that /ni(Ts, —0) —4 N(0, e=206).
Then amser,, (0) = e"20/n. Thus, the asymptotic relative efficiency of T}, w.r.t. Th, is e, 1, =

0/(e? — 1) < 1. This shows that Ty, is asymptotically more efficient than T},,.

3 Unbiased Estimation

3.1 UMVUE: functions of sufficient and complete statistics

Definition 1 (Estimable): If there exists an unbiased estimator of 1, then ¥ is called an estimable
parameter.

Definition 2 (UMVUE): An unbiased estimator 7'(X) of € is called uniformly minimum variance
unbiased estimator (UMVUE) iff Var(T'(X)) < Var(U(X)) for any P € & and any other unbiased
estimator U(X) of 6.

Suppose that there exists a sufficient and complete
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statistic T(X) for P € &. If 0 is estimable, i.e., there is a unique unbiased estimator of 4, then there
is a unique UMVUE of 6 that is of the form h(T") with a Borel function h.

The first method (Directly solving for h): Need the distribution of 7. Try some function h to
see if E[h(T)] is related to 0. If E[h(T")] = 6 for all P, what should h be?

: Let Xy, , X, beiid. from the uniform distribution on (0,8),6 > 0. Consider ¥} =
6. Since the sufficient and complete statistic X, has the Lebesgue p.d.f. ne’”x"’ll(o,g)(x), EXn =
nf=—" foe z"dr = 560. An unbiased estimator of 0 is (n + 1) X(,)/n, which is the UMVUE. Consider
now ¥ = g(f), where g is a differentiable function on (0,#). An unbiased estimator h(X(,)) of
Y must satisfy 0"g(0) = nfoe h(z)z" 'dz for all # > 0. Hence, the UMVUE of ¥ is h(X(,)) =
9 X)) + 17 Xy g (Xm))-

The second method (When a sufficient and complete statistic is available): Find an unbiased
estimator of 0, say U(X). Conditioning on a sufficient and complete statistic T'(X): E[U(X)|T] is
the UMVUE of 6. We need to derive an explicit form of E[U(X)|T].

: Let Xy,---,X, be iid. from the exponential distribution Exp(0,6). Fy(z) =
(1—e=®/%)1(g,9)(x). Consider the estimation of ¥ = 1 — Fy(t). X is sufficient and complete for 6 > 0.
L(,00)(X1) is unbiased for 9, E[l ) (X1)] = P(X; > t) = ¢¥. Hence T(X) = E[l(;00)(X1)|X] =
P(X; > t|X) is the UMVUE of . By Basu’s theorem, X;/X and X are independent. Thus,
P(X, >t X =7) = P(X,/X >t/X|X =2) = P(X; > X > t/Z). To compute this unconditional
probability, we need the distribution of X1/ " | X; = X1 /(X:1+>_, X;). Using the transformation
technique and the fact that Y , X; is independent of X; and has a gamma distribution, we obtain
that X;/> ., X; has the Lebesgue p.d.f. (n —1)(1 —2)" 21 1)(z). Hence P(X; > t|X = ) =
(0= 1) [,y (1 = 2)"2dz = (1 = ;£)"~1 and the UMVUE of ¥ is T(X) = (1 — -%)" .

nT

: Let Xy, -+, X, beiid. from an unknown population P in a nonparametric family
2. In many cases the vector of order statistics, T' = (X(1),- - , X(n)), is sufficient and complete for
P € &. Note that an estimator ¢(X1,---,X,) is a function of T iff the function ¢ is symmetric in

its n arguments. Hence, if T is sufficient and complete, then a symmetric unbiased estimator of any
estimable ¥ is the UMVUE. Specific examples: X is the UMVUE of ¥ = EX;, S? is the UMVUE of
Var(X;), n=' Y | X7 — 5% is the UMVUE of (EX;)?, F,(¢) is the UMVUE of P(X; < t) for any
fixed t. The previous conclusions are not true if T' is not sufficient and complete for P € &.
Remark 1 (Nonexistence of any UMVUE): If n > 2 and & contains all symmetric distributions
having Lebesgue p.d.f’s and finite means, then there is no UMVUE for yu = EXj.
: Let & = {1,---, N} be a finite population
of interest. For each i € &, let y; be a value of interest associated with unit i. Let s = {i1,- -+ ,i,}
be a subset of distinct elements of &2, which is a sample selected with selection probability p(s),
where p is known. The value y; is observed if and only if ¢ € s. If p(s) is constant, the sampling plan
is called the simple random sampling without replacement. Consider the estimation of Y = Zfil Yis
the population total as the parameter of interest. Let X = (X;,i € s) be the vector such that P(X; =
Yir, s Xn = ¥i,) = p(s)/nl. Let # be the range of y;, 0 = (y1,--- ,yny) and © = Hf\il % . Under
simple random sampling without replacement, the population under consideration is a parametric

family indexed by 6 € O.
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: (i) If p(s) > 0 for all s, then the vector of order statistics
Xy <+ < X(y) is complete for § € ©. (ii) Under simple random sampling without replacement, the
vector of order statistics is sufficient for # € ©. (iii) Under simple random sampling without replace-
ment, for any estimable function of 6, its unique UMVUE is the unbiased estimator g(Xy, -, X,),

where g is symmetric in its n arguments.

3.2 Characteristic of UMVUE and Fisher information bound

Remark 1: When a complete and sufficient statistic is not available, it is usually very difficult to
derive a UMVUE. In some cases, the following result can be applied, if we have enough knowledge
about unbiased estimators of 0.

: Let % be the set of all unbiased estimators of 0 with finite variances and T be an
unbiased estimator of 6 with E(T?) < co. (i) A necessary and sufficient condition for T'(X) to be a
UMVUE of 6 is that E[T(X)U(X)] = 0 for any U € % and any P € 2. (ii) Suppose that T = h(T),
where T is a sufficient statistic for P € &2 and h is a Borel function. Let U be the subset of %
consisting of Borel functions of T. Then a necessary and sufficient condition for 7" to be a UMVUE
of # is that E[T'(X)U(X)] = 0 for any U € %; and any P € &. The theorem can be used to find
a UMVUE, check whether a particular estimator is a UMVUE and show the nonexistence of any
UMVUE.

: (i) If T; is a UMVUE of 0,5 = 1,--- ,k, then Zlechj is a UMVUE of 0 =
Zle ¢;0; for any constants cy,--- ,¢x. (ii) If T} and T are two UMVUE’s of 6, then T} = T3 a.s. P
for any P € .

: Let Xy,---, X, be iid. from the uniform distribution on the interval (0,0). We
have shown that (1+n~')X(,) is the UMVUE for 6 when the parameter space is © = (0, 00). Suppose
now that © = [1,00). Then X, is not complete, although it is still sufficient for #. We now illustrate
how to use Theorem 1 to find a UMVUE of 6. Let U(X(,)) be an unbiased estimator of 0. Since
X(ny has the Lebesgue p.d.f nf="z" 1 ¢ (z), 0 = fol U(x)a" tdx + ff U(z)z" 'dz for all 6 > 1.
This implies that U(z) = 0 a.e. Lebesgue measure on [1,00) and fol U(z)z" 'dz = 0. Consider
T = h(X(n)). To have E(TU) = 0, we must have fol h(x)U(x)z"tdz = 0. Thus, we may consider the

c 0<x<1

following function: h(z) = , where ¢ and b are some constants. Since E[h(X(,))] =0,
br =>1
we obtain that 6 = CP(X(n) < 1) + bE[X(n)l(Loo)(X(n))] ="+ %(9 — 9_”). Thus, ¢ = 1 and
1 0< X <1

b= (n+1)/n. The UMVUE of 6 is then h(X,)) =
(1 —I—Tl_l)X(n) X(n) >1

: Let X = (X4,---,X,,) be asample from P € & = {P:
6 € ©}, where O is an open set in R¥. Suppose that T'(X) is an estimator with E[T(X)] = g() being a
differentiable function of 8; Py has a p.d.f. fy w.r.t. a measure v for all § € ©; and f, is differentiable as
a function of 6 and satisfies 2 [ h(z) fo(z)dv = [ h(z)Z fo(z)dv,0 € © for h(z) = 1 and h(z) = T(z).
Then Var(T(X)) > [Zg(0)]7[1(8)] 7' Zg(0), where I1(0) = E{-Z log fo(X)[% log fo(x)]"} is assumed

to be positive definite for any 6 € © and is called the Fisher information matrix.
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Proposition 1: (i) If X and Y are independent with the Fisher information matrices Ix(f) and
Iy (0), respectively, then the Fisher information about 6 contained in (X,Y") is I.(6) + Iy (). (ii) Sup-
pose that X has the p.d.f. fy that is twice differentiable in § and & [ h(z) fo(x)dv = [ h(zx)Z; fo(a)dv
holds with h(z) = 1 and f, replaced by 9fy/00. Then 1(8) = —E[52 log fo(X)]-

Remark 2: If § = ¢(n) and ¢ is differentiable, then the Fisher information that X contains
about 7 is a% (17)](1/)(17))[%1/}(77)]? However, the Cramér-Rao lower bound is not affected by any
one-to-one reparameterization.

Proposition 2: Suppose that the distribution of X is from an exponential family {fy : 6 € ©},
i.e., the p.d.f. of X w.r.t. a o-finite measure is fo(z) = exp{[n(0)]TT(X) — £(0)}c(x), where O is
an open subset of R*. (i) The regularity condition & [ h(z)fs(z)dv = [ h(z)Z fo(x)dv is satisfied
for any h with E|h(X)| < co and I1(f) = —E[% log fo(X)]. (ii) If I(n) is the Fisher information
matrix for the natural parameter 7, then the variance-covariance matrix Var(T) = I(n). (iii) If 1(9)
is the Fisher information matrix for the parameter ¥ = E[T'(X)], then Var(T) = [I(9)] .

3.3 U- and V-statistics

Definition 1 (U-statistics): Let Xy,---,X,, be ii.d. from an unknown population P in a non-
parametric family &2. If the vector of order statistic is sufficient and complete for P € &, then a
symmetric unbiased estimator of an estimable 8 is the UMVUE of . In many problems, parameters
to be estimated are of the form 6 = E[h(X1, -, X,,)] with a positive integer m and a Borel func-
tion h that is symmetric and satisfies E|h(X1, -+, X,,)| < oo for any P € &. An effective way of
obtaining an unbiased estimator of ¢ is to use U, = (Ci™)~' > h(X;,, -+, X;,, ), where Y _ denotes
the summation over the C}' combinations of m distinct elements {i,- - , i, } from {1,--- ,n}. The
statistic is called a U-statistic with kernel h of order m.

: Consider the estimation of p™, where p = EX; and m is an integer > 0. Using
h(z1,+ ,Tm) = Z1," T, we obtain the following U-statistic for p™: U, = (C:)~' Y X, -+ X,
Consider next the estimation of 0% = E[(X; — X5)?/2], we obtain the following U-statistic with kernel
h(zy,x2) = (21— 22)/2 Uy = 70255 Y cicjen S50 = S (300, X2 —nX?) = $2, which is the
sample variance.
: For a U-statistic U,, with E[h(X1,- -, X,,)]? < oo, Var(U,,) =
()=S0 Ok Cmm k¢, where (g = Var(hy (Xa, -+, Xp), hi(z1, -+ 2x) = E[R(Xy, -+, X)) | X1 =
T, X =ap] = E[h(x1, @ Xpats - X))o b = i — E[R(X 1, -, X))
Proposition 1: (i) %2(1 < Var(Uy,) < 2(; (ii) (n+1)Var(U,41) < nVar(U,) for any n > m; (iii)
For any fixed mand k =1,--- ,m, if (; = 0 for j < k and {, > 0, then Var(U,,) = k!(c:,;)%k JrO(n,}+1 ).
: Consider h(zy,x2) = x1xe, the U-statistic unbiased for w?, ;= EX;. Note that
() = pay (@) = ple —p). G = E(X)? = p2Var(Xy) = p20? h(z1,72) = 12 —
p?, and G = Var(X:1X,) = (4* + 0°)* — p*. Thus for U, = (C7)7' 32 ., <, XiXj, Var(U,) =
(C2)7H(CICL 51 + C3CY_500) = = 2p5[2(n — 2)p20® + (2 + 0)2 — pf] = o 4 20,

n

Remark 1 (Asymptotic distributions of U-statistics): For nonparametric &, the exact distribu-
tion of U, is hard to derive. We study the method of projection, which is particularly effective for

studying asymptotic distributions of U-statistics.
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Definition 2: Let T,, be a given statistic based on X1, --- , X,,. The projection of T}, on k,, random
elements Yy, - -, Y, is defined to be T,, = E(T,) + S5, [E(T,,|Y;) — E(T,)].
: Let T,, be a symmetric statistics with Var(T,,) < oo for every n and T, be the
projection of T,, on X, -, X,,. Then E(T},) = E(T,,) and E(T,, — T,,)> = Var(T,,) — Var(T},).
: For a U-statistic U,,, one can show that U,, = E(U,)+™ 2?21 711()(1-), where U, is the
projection of U, on X,---, X, and El(x) = hi(z) —E[h(Xy, -, X0n)], ha(z) = E[h(z, Xa, -+, X))l
Hence, if ¢; = Var(h,(X;)) > 0, Var(U,)) = m2¢; /n and E(U, — U,)2 = O(n=2). If ¢, = 0 but ¢, > 0,
then we can show that E(U, — U,)? = O(n~?). One may derive results for the cases where ¢, = 0,
but the case of either ¢; > 0 or {; > 0 is the most interesting case in applications.
: Let U, be a U-statistic with E[h(X1,---, X,,)]? < co. (i) If ; > 0, then \/n|U,, —
E(U,)] —a N(0,m2¢). (i) If ¢ = 0 but ¢ > 0, then n[U, — E(U,)] =4 %=1 3% A;(x3, — 1),
where x%j’s are ii.d. random variables having the chi-square distribution x7 and \;’s are some
constants (which may depend on P) satisfying Zj; A2 = (.
Proposition 2: E[mm=1) §~* A3, - = MCQ.

2 j=1
Definition 3 (V-statistics): Let Xy, .-+, X, be iid. from P. For every U-statistic U,, as an esti-
mator 6 = E[h(X1,- -, Xp)], there is a closely related V-statistic defined by V,, = == > --->°" _,
h(X;,, - ,X;, ). As an estimator of 6, V,, is biased; but the bias is small asymptotically. For a fixed

n, V, may be better than U, in terms of the mse.
Proposition 3: (i) Assume that E|h(X;,,---,h;,)] < oo forall 1 < iy < -+ < 4, < m.
Then the bias of V,, satisfies by, (P) = O(n~!). (ii) Assume that E[h(X;,, --,X; )]* < oo for
all 1 <4y <--- <4, <m. Then the variance of V,, satisfies Var(V},) = Var(U,,) + O(n=2).
: Let V,, be a V-statistic with E[h(X;,,---,X;,)]> < oo for all 1 < i < ---
im < m. (i) If ¢¢ = Var(hi(X1)) > 0, then /n(V,, — 0) —4 N(0,m?¢;). (ii) If ¢ = 0 but ¢ =
Var(hy(X1, X2)) > 0, then n(V,, — 0) =4 ™= 57 Ajy3).

3.4 Construction of unbiased or approximately unbiased estimators and method

of moments

Definition 1 (Survey samples from a finite population): Let & = {1,---, N} be a finite pop-
ulation of interest. For each ¢ € &, let y; be a value of interest associated with unit 7. Let
s = {i1, -+ ,in} be a subset of distinct elements of &2, which is a sample selected with selection
probability p(s), where p is known. The value y; is observed iff i € s. Y = Zj\le y; is the unknown
population total of interest. Define m; = probability that i € s, =1,---, N.

: (i) (Horvitz-Thompson). If 7; > 0 fori =1,--- , N and 7; is known when i € s, then
Vi = > ics Yi/ T is an unbiased estimator of the population total Y. (ii) Define 7;; = probability
thatiesandjes,i=1,--- ,N,j=1,---,N. Then Var(Vy,) = Zf\il Z;V:Hl(ﬂﬂrj—mj)(%—%)?

Remark 1 (Deriving asymptotically unbiased estimators): An exactly unbiased estimator may
not exist, or is hard to obtain. We often derive asymptotically unbiased estimators. Functions of
sample means are popular estimators.

Remark 2 (Functions of unbiased estimators): If the parameter to be estimated is ¢ = ¢(8)

with a vector-valued parameter # and U, is a vector of unbiased estimators of components of 6,
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then T,, = g(U,) is often asymptotically unbiased for ¥. Note that E(T,) = Eg(U,,) may not exists.
Assume that g is differentiable and c,,(U,, —0) —4 Y. Then amser, (P) = E{[Vg(0)]"Y }?/c%. Hence,
T, has a good performance in terms of amse if U, is optimal in terms of mse.

Definition 2 (Method of moments): Consider a parametric problem where X7, --- , X, are i.i.d.
random variables from Py, 0 € © C R, and E|X;|* < co. Let p; = EX? be the jth moment of P and
let fi; = %Z?:l Xij be the jth sample moment, which is an unbiased estimator of pu;,7 =1,--- k.
Typically, p; = h;(0),j = 1,--- , k, for some functions h; on R*. By substituting x;’s on the left-hand
side by the sample moments fi;, we obtain a moment estimator 0, i.e. 6 satisfies ji; = h;(6),j =
1,--- k. This method of deriving estimators is called the method of moments.

: Let Xi,---, X, beiid. from a population Py indexed by the parameter 6 = (u,o?),
where 1 =EX; € R and 0? = Var(X;) € (0,00). Since EX; = p and EX? = o2 + p?, setting ji; = p
and fi; = 0% + pi? we obtain the moment estimator § = (X, 2 3" (X, — X)?).

4 Estimation in Parametric Models

4.1 Bayesian approach

Definition 1 (Bayesian approach): X is from a population in a parametric family & = P, : € ©,
where § C R¥ for a fixed integer k > 1.  is viewed as a realization of a random vector § € © whose
prior distribution is II. Prior distribution: past experience, past data, or a statistician’s belief
(subjective). Sample X € 2Z": from Py = P9, the conditional distribution of X given . Posterior
distribution: updated prior distribution using observed X = x.

: Assume & = {P,)p : § € O} is dominated by a o-finite measure
v and fo(x) = dP,g/dv is a Borel function on (2 x ©,0(%a2 x %Be)). Let II be a prior distri-
bution on ©. Suppose that m(z) = [y fo(x)dll > 0. (i) The posterior distribution Py, << II
and dPy,/dll = fo(x)/m(x). (ii) If I << X and dr/d\ = w(0) for a o-finite measure A, then
APy /d\ = fo(x)m(0)/m(z).

Definition 2 (Bayes action): Let @7 be an action space in a decision problem and L(#,a) > 0 be
a loss function. For any x € 2, a Bayes action w.r.t. Il is any 6(x) € o such that E[L(6,(z))|X =
x] = minge E[L(0, a)| X = x| where the expectation is w.r.t. the posterior distribution P),.

Definition 3 (Conjugate prior): An interesting phenomenon is that the prior and the posterior
are in the same parametric family of distributions. Such a prior is called a conjugate prior.

Definition 4 (Generalized Bayes action): The minimization in Definition 4.1 is the same as the
minimizing [g L(6,d(x)) fo(z)dIl = minge o [o L(6, a) fo(x)dIL. This is still defined even if II is not a
probability measure but a o-finite measure on ©, in which case m(z) may not be finite. If II(©) # 1,
IT is called an improper prior. §(z) is called a generalized Bayes action.

Definition 5 (Hyperparameters and empirical Bayes): A Bayes action depends on the chosen prior
with a vector & of parameters called hyperparameters. If the hyperparameters £ is unknown, one way
to solve the problem is to estimate £ using some historical data; the resulting Bayes action is called an
empirical Bayes action. If there is no historical data, we may estimate £ using data x and the resulting

Bayes action is also called an empirical Bayes action. The simplest empirical Bayes method is to
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estimate £ by viewing = as a “sample” from the marginal distribution P c(A) = f@ wjo(A)dllge, A €
Bo, where Iy is a prior depending on £ or from the marginal p.d.f. m x) fo fo(x)dIL, if Py
has a p.d.f. fs. The method of moments can be applied to estimate &.

: Let X = (X4,--+,X,) and X;’s be i.i.d. with an unknown mean p € R and a known

variance 0. Assume the prior II, ¢ has mean o and variance o3, £ = (19, 03). To obtain a moment
estimate of &, we need to calculate [, z1m(x)de and [, im(z)de,z = (x1,--- ,x,). These two
integrals can be obtained without knowing m(z). Note that [;, z1m(x)dz = [g [5. 1 fu(2)dzdll, e =
Jendllye = po and [fo, xim(z)de = [g [z, 21 fu(@)dzdllye = o® + [ p2dllye = 0 + pg + 0.
Thus, by viewing =1, - ,z, as a sample from m(x), we obtain the moment estimates figp = & and
68 =157 (x; — %)* — 02, where Z is the sample mean of z;’s.
Definition 6 (Hierarchical Bayes): Instead of estimating hyperparameters, in the hierarchical
Bayes approach we put a prior on hyperparameters. Let Iy be a prior with a hyperparameter
vector £ and let A be a prior on =, the range of £&. Then the “marginal” prior for 6 is defined
by II(B) = [.IIye(B)dA(§), B € PBeo. If the second-stage prior A also depends on some unknown
hyperparameters, then one can go on to consider a third-stage prior. In most applications, however,
two-stage priors are sufficient, since misspecifying a second-stage prior is much less serious than
misspecifying a first-stage prior.

: If X ~ N(u,0?%/n) with a known o2, the prior 7(u|€) is the p.d.f of N'(&, 02) with a
known o2, and the prior of ¢ is N(po, 7?) with a known g and 72, then the marginal prior p.d.f of
wis N (po, 02 + 72).

4.2 Bayes rule and computation

In a decision problem, let §(z) be a Bayes rule w.r.t. a
prior II. (i) If 6(X) is a unique Bayes rule, then 6(X) is admissible. (ii) If © is countable set, the
Bayes risk r5(IT) < oo, and II gives positive probability to each 8 € ©, then §(X) is admissible. (iii)
Let & be the class of decision rules having continuous risk functions. If §(X) € &,r5(II) < oo, and
IT gives positive probability to any open subset of O, then §(X) is &-admissible.

: Suppose that © is an open set of R¥. In a decision problem, let & be the class
of decision rules having continuous risk functions. A decision rule T' € & is &-admissible if there
exists a sequence {II,;} of priors such that (a) the generalized Bayes risks rr(Il;) are finite for all
J; (2) for any 6y € © and n > 0, lim;_, %W = 0, where 7}(Il;) = infreg rr(IL;) and
Ogon =10 € © : ||0 — 0o|| < n} with II;(Og,,,) < oo for all j.

Proposition 1 (Bayes estimators are biased): If §(X) is a Bayes estimator of ¢ = g(6) under the
squared error loss, then 0(X) is not unbiased except in the trivial case where r5(II) = 0.

: Suppose that X has a p.d.f. fy(z) wr.t. a o-finite measure v. Suppose that
0 = (61,602),0; € ©;, and that the prior has a p.d.f () = 7,0, (01)7g, (02) Where 7, (02) is a p.d.f.
w.r.t. a o-finite measure v, on ©, and for any given 6, 7y, j9,(01) is a p.d.f. w.r.t. a o-finite measure
v1 on ©;. Suppose further that if 6, is given, the Bayes estimator of h(6;) = ¢(6;,02) under the
squared error loss is §(X, 65). Then the Bayse estimator of g(6;,62) under the squared error loss is
6(X) with d(z) = [o d(x,02)po, | (02)dve Where py,|,(02) is the posterior p.d.f. of 6, given X = z.
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Remark 1: Often, Bayes actions or estimators have to be computed numerically. Typically we
need to compute E,( f® 9(0)p(0)dv with some function g, where p(6) is a p.d.f. w.r.t. a o-finite
measure v on (@,%@) and © C ]Rk. There are many numerical methods for computing integrals
E,(9)-

Definition 1 (The simple Monte Carlo method): Generatei.i.d. 1), -.. 8™ from a p.d.f. h(6) >
0 w.r.t. v. By the SLLN, as m — oo, E,(g) = + ) Dy W —as. Jo %h(@)du =E,(9).

Remark 2: The simple Monte Carlo method may not work well because (i) the convergence of
E,(g) is very slow when k (the dimension of ©) is large; (ii) generating a random vector from some
k-dimensional distribution may be difficult, if not impossible.

Remark 3 (More sophisticated MCMC methods): Different from the simple Monte Carlo in two
aspects: (i) generating random vectors can be done using distributions whose dimensions are much
lower than k; (ii) 8V, --- 0™ are not independent, but form a homogeneous Markov chain.

Definition 2 (Gibbs sampler): Let y = (y1, Y2, ,ya). y;’s may be vectors with different dimen-
sions. At step t = 1,2,---, given y*~, generate ygt) from P(yét_l) (t 1)|y(t 1))
Py T ), gl from Py, ,yff)lly;f V).

, , yj(-t) from

4.3 Minimaxity and admissibility

Definition 1 (Minimax estimator): An estimator ¢ is minimax if sup, Rs(0) = infr sup, Rr(0).

Remark 1: A minimax estimator can be very conservative and unsatisfactory. It tries to do as
well as possible in the worst case. A unique minimax estimator is admissible, since any estimator
better than a minimax estimator is also minimax.

: Let II be a proper prior on © and § be a Bayes
estimator of § w.r.t. II. Suppose ¢ has constant risk on Op. If II(©r) = 1, then ¢ is minimax. If, in
addition, § is the unique Bayes estimator w.r.t. II, then it is the unique minimax estimator.

: Let II;,j = 1,2,--- be a sequence of priors and r; be the Bayes risk of a Bayes
estimator of § w.r.t. II;. Let T be a constant risk estimator of 6. If liminf;r; > Ry, then T is
minimax.

Let Xi,---,X, be iid. components having the A (u,0?) distribution with an
known p = 6 € R and a known 02 If the prlor is NV (o, 02), then the posterior of 6 given X = x

2
0'00'

is N (p«(z),c?) with p,(z) = MZJFUQ Lo + MerJQX and ¢ = ot o We now show that X is

minimax under the squared error loss. For any decision rule T, supgcp Rr(0) > [, Rr(0)dIL(6) >
Jg Ry (0)dIL(0) = E{[0 — p.(X)]*} = E{E{[0 — 1. (X)]*|X}} = E(c®) = ¢*. Since this result is true
for any 02 > 0 and ¢ — 0%/n as 02 — 00, supyeg Rr(0) > %2 = supyer Rx(0) where the equality
holds because the risk of X under the squared error loss is 02/n and independent of § = p. Thus, X
is minimax.
: Let Oy be a subset of ©® and T be a minimax estimator of § when O is the parameter
space. Then T is minimax estimator if supycg Rr(0) = supyce, Rr(0)-
: Suppose that X has the p.d.f.
c(0)h(z)e’T™® w.r.t. a o-finite measure v, where T'(x) is real-valued and 6 € (0_,6,) C R. Consider

the estimation of ¥ = E[T'(X)] under the squared error loss. Let A > 0 and v be known constants
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and let T ,(X) = (T"+~vA)/(1 + ). Then a sufficient condition for the admissibility of T ., is that
o Easdd = [} £555d0 = 0o, where 0 € (0_,0..).

: Suppose that T as an estimator of 6 has constant risk and is admissible. Then T is
minimax. If the loss function is strictly convex, then 7' is the unique minimax estimator.

: Assume that X has the p.d.f. as described in Theorem 4 with §_ = —oco and
0, = oo. (i) As an estimator of ¢ = E(T), T(X) is admissible under the squared error loss and the
loss (a —¥)?/Var(T). (ii) T is the unique minimax estimator of ¥ under the loss (a — 9)?/Var(T).

: Let Xy,--+,X, be iid. from N(0,0%) with an unknown ¢ > 0 and let Y =
>or, X?2. Consider the estimation of o2. The risk of Y'/(n+2) is a constant under the loss (a—0c?)?/o*.
We now apply Theorem 4 to show that Y /(n + 2) is admissible. Note that the joint p.d.f. of X;’s is
of the form ¢(0)e’”® with § = —n/(40?),c(0) = (—20/n)"2,T(X) = 2Y /n,0_ = —cc and 6, = 0.
By Theorem 4, T ., = (T'+~A)/(1 + A) is admissible under the squared error loss if, for some ¢ > 0,
[ o e M(=20)nA2gg = [ A9V 2 = co. This means T , is admissible if v = 0 and A = 2/n,
orify >0 and A > 2/n. In particular, 2Y /(n+2) is admissible for estimating E(T) = 2E(Y)/n = 202,
under the squared error loss. It is easy to see that Y /(n + 2) is then an admissible estimator of o2

under the squared error loss and the loss (a — 0%)?/0*. Hence Y /(n + 2) is minimax under the loss

(a —o?)?/ct.

4.4 Simultaneous estimation and shrinkage estimators

Definition 1 (Simultaneous estimation): Estimation of a p-vector ¥ of parameters (functions of
#) under the decision theory approach.

Remark 1 (Difference from estimating ¥/ component-by-component): A single loss function
L(¥,a), instead of p loss functions.

Definition 2 (Squared error loss): A natural generalization of the squared error loss is L(6,a) =
lla =011 = 327 (ai — 6:)*.

Definition 3 (James-Stein estimator): We start with the simple case where X is from N, (0, I,,)
with an unknown € € RP. James and Stein proposed the following class of estimators of € having
smaller risks than X when the squared error loss is used and p > 3: §. = X — ﬁ(X —¢), where
c € R? is fixed and the choice of ¢ is discussed later.

Definition 4 (Extended James-Stein estimators): For the purpose of generalizing the results
to more complicated situations, we consider the following extension of the James-Stein estimator:
der =X — HT)((p__CQH)Q (X — ¢), where ¢ € R? and r € R are known.

Motivation 1 (Shrink the observation toward a given point ¢): Suppose it were thought a priori

likely, though not certain, that § = ¢. Then we might first test a hypothesis Hy : § = ¢ and estimate
0 by c if Hy is accepted and by X otherwise. The best rejection region has the form || X — ¢||* > ¢
for some constant ¢ > 0 so that we might estimate 0 by s «)(||X — ¢|[*) X + [1 — L11,00) (|| X — ¢][*)c].
d..r is a smoothed version of this estimator, since, for some function 9, 4., = (|| X — ¢|[*) X + [1 —
(|| X — ¢||?)]e. Any estimator having this form is called a shrinkage estimator.

Motivation 2 (Empirical Bayes estimator): A Bayes estimator of 6 is of the form § = (1 —

B)X + Be, where c is the prior mean of § and B involves prior variances. 1 — B is “estimated” by
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(|| X — ¢||?). d.. can be viewed as an empirical Bayes estimator.
: Suppose that X is from N, (6, I,)) with p > 3. Then,
under the squared error loss, the risks of the following shrinkage estimators of 8, o, , = X — M Xp 62”)2 (X—
¢), where ¢ € R? and r € R are known, are given by Rs, (0) = p — (2r —r?)(p — 2)’E(|| X — ¢||7?).
Remark 2: The risk of J., is smaller than p, the risk of X for every value of § when p > 3 and

0<r<2 60=046. is better than any d., with r # 1.

Remark 3 (The improvement): To see that §. may have a substantial improvement over X in
terms of risks, consider the special case where § = c. Since || X — ¢||? has the chi-square distribution
X; when 0 = ¢, E[|X — ][> = (p—2)"" and Rs,,(0) = p— (2r —r*)(p — 1)’E(||X — ¢[|7*) = 2. The
ratio Rx(0)/Rs,(0) equals p = 2 when 6 = ¢ and can be larger than 1 near § = ¢ when p is large.

Remark 4 (Minimaxity and admissibility of .). Since X is minimax, ¢., is minimax provided
that p > 3and 0 <7 < 2. Unfortunately, the James-Stein estimator d. with any c is also inadmissible.
It is dominated by § = X — min{1, = CHQ HX — ¢). This estimator, however, is still inadmissible.
Although neither the James-Stein estimator d. nor §} is admissible, it is found that no substantial
improvements over d; are possible.

Definition 5 (Extension of Theorem 1 to Var(X) = ¢*D): Consider the case where Var(X) = 62D
with an unknown o2 > 0 and a known positive definite matrix D. If o2 is known, then an extended
%D’%X — ¢). Under the squared error loss, the risk
of 8., is o?[tr(D) — (2r — r?)(p — 2)?0?E(||D~H(X — ¢)||7?)]. When o2 is unknown, we assume that
there exists a statistic Sg such that S is independent of X and S3 /02 has the chi-square distribution

James-Stein estimator is gcm =X -

X%, Replacing ro? in 4,, by 62 = tS2 with a constant ¢ > 0 leads to the following extended
James-Stein estimator: gc =X — %D’I(X — ¢). From the risk formula for gcm and the
independence of 6% and X, the risk of d, is Rj (0) = o*{tr(D) — [2tm — t*m(m + 2)](p — 2)*0*k(0)},
where § = (0,0?) and £(0) = E(||D~"(X — ¢)|[7?). Replacing ¢ by 1/(m + 2) leads to R; (0) =
a?[tr(D) —m(m+2)" (p —2)?0?E(||D~1(X — ¢)||~?)], which is smaller than otr(D) (the risk of X)
for any fixed 0,p > 3.

: Consider the general linear model X = Zj + € with € ~ N,(0,0%),p > 3, and a
full rank Z. Consider the estimation of # = § under the squared error loss. The LSE A is from
N(B,02D) with a known matrix D = (Z7Z)~!, S2 = SSR is independent of 3, S2/0? has the chi-
sqaure distribution Xi_p- Hence, from the previous discussion, the risk of the shrinkage estimator
B — HZTPZ(%ZTZ(B — ¢) is smaller than that of 3 for any B and o2, where ¢ € R is fixed and
62 =SSR/(n—p+2)

Definition 6 (Other shinkage estimators): From the previous discussion, the James-Stein esti-
mators improve X substantially when we shrink the observations toward a vector ¢ that is near
0 = EX. One may consider shrinking the observations toward the mean of the observations rather
than a given point; that is, one may obtain a shrinkage estimator by replacing ¢ in 4., by X Ip,

—1 P

where X = p _1 X; and J, is the p-vectors of ones. However, we have to replace the fac-

m(X XJ) and

X - %D*O{ — XJ,). These estimators are better than X (and, hence, are minimax)

when p > 4, under the squared error loss.

tor p — 2 in 4., by p — 3. This leads to shrinkage estimators X —
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4.5 Likelihood and maximum likelihood estimator (MLE)

Definition 1: Let X € 2 be a sample with a p.d.f. fy w.r.t. a o-finite measure v, where
6 € © C R*. (i) For each x € 27, fs(x) considered as a function of @ is called the likelihood function
and denoted by (). (i) Let © be the closure of ©. A § € O satisfying 1() = maxgee 1(0) is called
a maximum likelihood estimate (MLE) of 6. If 0 is a Borel function of X a.e. v, then 6 is called a
maximum likelihood estimator MLE of 6. (iii) Let g be a Borel function from © to R?,p < k. If 6 is
an MLE of 0, then 9 = g(f) is defined to be an MLE of ¢ = g(f).

Remark 1 (Finding an MLE): Since logx is a strictly increasing function, 0 is an MLE if and
only if it maximizes the log-likelihood function logl(#). If [(0) is differentiable on ©°, tthen possible
candidates for MLE’s are the values of 6 € ©° satisfying 81%9[(9) = 0, which is called the likelihood
equation or log-likelihood equation.

: Let Xi,---, X, be ii.d. binary random variables with P(X; =1)=p € © = (0,1).
When (X1, ,X,) = (21, ,x,) is observed, the likelihood function is {(p) = [\, p™ (1—p)*~* =
p"®(1 —p)"=2) where 2 =n"1Y."" ;. Note that © = [0,1] and ©° = ©. The likelihood equation

nz __ n(l-=%)

P I=p
derivative of logl(p) is _ZT? - 7(11(1—;;2)’

boundary of ©), I(p) — 0. Thus, Z is the unique MLE of p.
Definition 2 (The Newton-Raphson method): In applications, MLE’s typically do not have

is = 0. If 0 < Z < 1, then this equation has a unique solution Z. The second-order

which is always negative. Also, when p tends to 0 or 1 (the

analytic forms and some numerical methods have to be used to compute MLE’s. A commonly used
numerical method is the Newton-Raphson iteration method, which repeatedly computes G+ =
6@ — [8210°ag;§0) |9:é(t)]*161%91(9)|0:é(”’t =0,1,---, where 0 is an initial value and 92 log1(6)/0006T
is assumed of full rank for every 6 € O.

Definition 3 (The Fisher-scoring method): If, at each iteration, we replace [8281905‘;?) lo—go ]t by

[{]E(azlg"gel?))}|9:é<t>]_1, where the expectation is taken under Py, then the method is known as the

Fisher-scoring method.

4.6 Asymptotically efficient estimation

Definition 1 (Asymptotic comparison): Let {6,} be a sequence of estimators of 6 based on a
sequence of samples {X = (Xy,---,X,,),n=1,2,---}. Suppose that as n — oo, 6, is asymptotically
normal (AN) in the sense that [V, (6)]"/2(0, — 0) —4 Ni(0,1;), where, for each n, V,(6) is a
k x k positive definite matrix depending on 6. If 6 is one-dimensional, then V,,(#) is the asymptotic
variance as well as the amse of 6,. When k > 1, V,.(0) is called the asymptotic covariance matrix
of én and can be used as a measure of asymptotic performance of estimators. If éjn is AN with
asymptotic covariance matrix V;,(6),j = 1,2, and V3,,() < V2,(8) for all § € ©, then 0,, is said to
be asymptotically more efficient than [

: Let Xy, -+, X, beiid. from a p.d.f. fy wr.t. a o-finite measure v on (R, %),
where §# € © and © is an open set in R*. Suppose that for every z in the range of X, fo(x) is
twice continuously differentiable in ¢ and satisfies 2 [g(x)dv = [ Zipg(x)dv for o(z) = fo(x)
and = 0fy(x)/90; the Fisher information matrix I;(0) = E{Z log fo(X1)[Z log fo(X1)]"} is positive
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definite; and for any given 6 € ©, there exists a positive number ¢y and a positive function hy such

8% lo ~(x
that Elhg(X;1)] < oo and Sup73|‘7—9‘|<0€||é'y+fy7‘()
||A|| = \/tr(AT A) for any matrix A. If 6, is an estimator of # and is AN with V() = V(0)/n, then
there is a ©9 C © with Lebesgue measure 0 such that the information inequality V;,(6) > [I,,(6)]~*
holds if § & O,.

Definition 2 (Asymptotic efficiency): Assume that the Fisher information matrix I,,(6) is well

|| < hg(z) for all x in the range of X;, where

defined and positive definite for every m. A sequence of estimators {én} that is AN is said to be
asymptotically efficient or asymptotically optimal if and only if V,,(0) = [I,,(6)] .

Remark 1 (Estimating a function of #): Suppose that we are interested in estimating ¥ = g(6),
where g is a differentiable function from © to RP,;1 < p < k. If én is AN, then 1§n = g(én) is
asymptotically distributed as N, (9, [Vg(0)]"V,.(0)Vg(0)). Thus, the information inequality becomes
[Vg()]TV,(0)Vg(0) > [I,(9)]7!, where I,,(¥) is the Fisher information matrix about ¥ contained
in X. If p =k and g is one-to-one, then [I,(9)]~" = [Vg(0)]T[L.(0)]"'Vg(#) and, therefore, I, is
asymptotically efficient if and only if 0, is asymptotically efficient.

: Assume the conditions of Theorem 1. (i) Asymptotic existence and consistency.
There is a sequence of estimators {,} such that P(s,(f,) = 0) — 1 and 6,, —, 0, where s,(y) =
m%w. (ii) Asymptotic efficiency. Any consistent sequence 0, of RLE(root of the likelihood equa-
tion)’s is asymptotically normal and asymptotically efficient.

: Assume the conditions of Theorem 1. Let m() be a prior p.d.f w.r.t. the Lebesgue
measure on © and p,(y) be the posterior p.d.f., given Xy,---,X,, n = 1,2,---. Assume that
there exists an no such that p,,(y) is continuous and positive for all v € O, [p,,(7)dy = 1
and [ [|7|[pn,(7)dy < oo. Suppose further that, for any e > 0, there exists a § > 0 such that
limy,— 0o P(SUD)jy_g||>e M > —6) = 0,limy, e P(sup),_g| <s w > € = 0,
where [() is the likelihood function and s, () is the score function. (i) Let pZ(7y) be the poste-
rior p.d.f of \/n(y — T,), where T,, = 0 + [1,(0)] 's,(0) and @ is the true parameter value, and
let ¢(v) be the p.d.f. of Nj(0,[I1(#)]7'). Then [(1+ ||v])IpL(y) — ¥ (v)|dy —, 0. (ii) The Bayes
estimator of # under the squared error loss is asymptotically efficient.

Proposition 1: The posterior p.d.f. is approximately normal with mean 6 + [I,,(0)]~'s, (6) and

covariance matrix [I,,(0)] .

4.7 MLE in generalized linear models (GLM) and quasi-MLE

Definition 1 (The structure of a GLM): The sample X = (X,---,X,,) has independent X;’s
and X; has the p.d.f. exp{%f(m}h(aci, ¢i),i=1,--+ ,n, wr.t. a o-finite measure v, where n; and
¢; are unknown, ¢; > 0,7, € Z={n:0 < [ h(z,¢)e™/?dv(z) < oo} C R for all 4,  and h are known
functions, and ¢”(n) > 0 is assumed for all n € Z°. Note that the p.d.f. belongs to an exponential
family if ¢; is known. As a consequence, E(X;) = ('(n;) and Var(X;) = ¢:¢"(n:),i = 1,--- ,n. Define
w(n) = ¢’'(n). Tt is assumed that 7; is related to Z;, the ith value of a p-value of covariates, through
g(u(n)) = BYZ;,i = 1,--+ ,n, where 3 is a p-vector of unknown parameters and g, called a link
function, is a known one-to-one, third-order continuously differentiable function on {u(n) : n € Z°}.

If 4 = g=1, then n; = BT Z; and g is called the canonical or natural link function. If g is not canonical,
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we assume that din(g o u)(n) # 0 for all . In a GLM, the parameter of interest is 5. We assume the
range of B is B = {B: (gopu) 1 (B8%2) € Z° for all 2 € 2}, where Z is the range of Z;’s. ¢;’s are
called dispersion parameters and are considered to be nuisance parameters.

Proposition 1 (MLE in GLM): An MLE of 8 in a GLM is considered under assumption ¢; =
¢/t;;i =1,--+ ,n, with an unknown ¢ > 0 and known positive t;’s. Let § = (3,¢) and ¢ = (gopu) L.

logl(0) = Y, llog ha;, £)+ L2z sCB 200 010810) — LS (1, — p(w(B7 Z:)) W/ (BT Zi)t:i Z:}

Ologl(6) __ dlog h( zl,¢> t Y(BT Z:)xi —¢(v (BT Z;i
— 0, Qlosl®) _ s 9loghlov/t) w6 2o —cus" 20

MLE of 3, if it exists, can be obtained without estimating ¢. The second likelihood equation, however,

= 0. From the first likelihood equation, an

is usually difficult to solve. Some other estimators of ¢ are suggested by various researchers. Suppose

alogz(e)) _ M, (B) 8%logl(h) __ _ Ru(B)=Ma(8)
B ¢ 7 0BopT @

Mo (8) = S [0 (87 201 (BT Z) 2 2T, B(B) = Sy [wi— (B Z)" (87 Z)t, 2 2T Con
sider first the simple case of canonical g, v = 0 and R,, = 0. If M, (5) is positive definite for all
B3, then —logl(6) is strictly convex in S for any fixed ¢ and, therefore, § is the unique MLE of j.
For noncanonical g, R,(8) # 0 and j is not necessarily an MLE. If R, (8) is dominated by M, (5),
i.e., [M,(8)]Y2R,(8)[M,(8)]"'/% = 0 in some sense, then —log(f) is convex and 3 is an MLE for

large n. In a GLM, an MLE B usually does not have an analytic form and a numerical method such

there is a solution 3 to the likelihood equation. Var(

, where

as the Newton-Raphson has to be applied.

: Consider the GLM with ¢(n) = n*/2,7 € R. If g is the canonical link, then the
model is the same as a linear model with independent ¢;’s distributed as N(0, ¢;). Suppose now
that ¢ is noncanonical but ¢; = ¢. Then the model reduces to the one with independent X;’s and
X;=N(g*B"Z;),$),i =1,--- ,n. This type of model is called a nonlinear regression model (with
normal errors) and an MLE of 8 under this model is also called a nonlinear LSE, since maximizing
the log-likelihood is equivalent to minimizing the sum of squares > . [X; — ¢~ ' (87 Z;)]?>. Under
certain conditions the matrix R, () is dominated by M, (/) and an MLE of /5 exists.

: Consider the GLM with ¢(n) =e",n € R, ¢; = ¢/t;. If ¢; =1,
then X; has the Poisson distribution with mean e”. Under the canonical link g(¢) = logt, M,,(8) =
e e?" %1, 2,77 | which is positive definite if inf; e 2 > 0 and the matrix (v 21, ,V/TnZn) is
of full rank. There is one noncanonical link that deserves attention. Suppose that we choose a link
function so that [¢/(¢)]2¢”(¢(t)) = 1. Then M, (8) = >_1  t:Z;Z] does not depend on . It is shown
that the asymptotic variance of the MLE 8 is [ M, (B)]7!. The fact that M, (3) does not depend on
B makes the estimation of the asymptotic variance (and, thus, statistical inference) easy. Under the
Poisson model, ¢ (t) = e’ and, therefore, we need to solve the differentiable equation [¢'(¢)]?e¥®) = 1.
A solution is ¥ (t) = 2log(t/2) and the link g(u) = 2,/p.

: Consider the GLM with ¢; = ¢/t; and t;’s in a fixed interval (tg,tx0),0 < tg < too
0o. Assume that the range of unknown parameter 3 is an open subset of R?; at the true value of 5,0 <
inf; (87 Z;) < sup,; (BT Z;) < oo, where ¢(t) = [¢/(£)]2¢" (¥(t)); as n — oo, max;<, ZF (ZT2)1Z; —
0 and A\_[ZTZ] — oo, where Z is the n x p matrix whose ith row is the vector Z; and A_[A] is the
smallest eigenvalue of A. (i) There is a unique sequence of estimators {3, } such that P(s,(3,) = 0) —
1 and f, —, [, where s,(8) = 0logl(B,¢)/0¢ is the score function. (ii) Let I,,(8) = Var(s,(B)).
Then [I,(8)]Y2(B, — B) —a N, (0, I,). (iii) If ¢ is known or the p.d.f. indexed by 6 = (8, ¢) satisifies
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the conditions for fy in Theorem 1 of section 4.6, then B, is asymptotically efficient.

Definition 2 (Quasi-MLE): If assumption ¢, is arbitrary, or the distribution assumption on X;
does not hold, but E(X;) = ¢'(n;), Var(X;) = ¢:¢"(n;),i = 1,-+- ,nand g(u(n;)) = Y Z;i =1,--- ,n
still hold, we estimate 3 by solving equation G,,(8) = > {[{@;— (v (8T Z:))W' (BT Z;)t; Z;} = 0, then
the resulting estimator is called a quasi-MLE. This method is also called the method of generalized
estimating equations (GEE). They are efficient if the GEE is a likelihood equation, and is robust if
it is not.

Remark 1: The asymptotic existence and consistency of quasi-MLE can be shown using a similar

argument to the proof of Theorem 2 of section 4.6.

4.8 Other asymptotically efficient estimators and pseudo MLE

Definition 1 (One-Step MLE): Let s,(7) be the score function. Let 6" be an estimator of 6 that
may not be asymptotically efficient. The one-step MLE is the first iteration in computing an RLE
using the Newton-Raphson method with 6 as the initial value, 65 = 6 — [Vs,,(65)] s, ().
Without any further iteration, ér(ll) is asymptotically efficient under some conditions.

. Assume that the conditions in Theorem 1 of section 4.6 hold and that 6 is Vn-
consistent for 6. (i) The one-step MLE 65" is asymptotically efficient. (ii) The one-step MLE obtained
by replacing Vs, () with its expected value, —I,,(y) (the Fisher-scoring method), is asymptotically
efficient.

Definition 2 (Pseudo MLE): Let X1, -+, X,, be a random sample from a pdf in a family indexed
by two parameters 6 and 7 with likelihood [(#, 7). The method of pseudo MLE may be viewed as
follows. Based on the sample, an estimate 7 of 7 is obtained using some technique other than MLE.
The pseudo MLE of € is then obtained by maximizing the likelihood (8, 7).

Remark 1: 7 is viewed as a nuisance parameter. Pseudo MLE consists of replacing m by an
estimate and solving a reduced system of likelihood equations, which works when a higher dimen-
sional MLE is intractable but a lower dimensional MLE is feasible. The consistency and asymptotic
normality hold under fairly standard regularity conditions.

: Assume the conditions in

Theorem 1 of section 4.6. Assume also 7 is a consistent estimator of mg. As n — oo, with probability

dlogl(6,#)

50 =0 and f —p 0o where 6 is the true value of 6.

tending to 1, there exists 6 such that

5 Estimation in Non-Parametric Models

5.1 Empirical c.d.f. and empirical likelihoods

Definition 1 (Estimation in nonparametric models): Data X = (X, -, X,), where X,’s are
random d-vectors i.i.d. from an unknown c.d.f. F' in a nonparametric family. We study mainly two
topics: estimation of the c.d.f. F' and estimation of § = T'(F), where T is a functional.

Definition 2 (Empirical c.d.f.): F,(t) = £ 3" | [ 4(X;),t € R, where (—o0,a] denotes the

set (—o0,a;] X -+ x (—00,ay4| for any a = (a1, ,aq) € R
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Proposition 1 (Properties of empirical c.d.f.): (i) For any t € R? nF,(t) has the binomial
distribution B(F'(t),n); (ii) F,(t) is unbiased variance F(t)[1 — F(t)]/n; (iii) F,(t) is the UMVUE
under some nonparametric models; (iv) F,(t) is y/n-consistent for F(t).

: Define sup-norm distance po(G1, G2) = ||G1 — G2||s = sup;cpa |G1(t) —G2(t)|, G €
Z. (i) When d = 1, there exists a positive constant C' (not depending on F') such that P(ps (F,, F) >
z) < Ce 2% 2 >0n=12--. (ii) When d > 2, for any € > 0, there exists a positive constant
C..a (not depending on F) such that P(pe(Fp, F) > 2) < CQde’(z’E)"Zz,z >0,n=12---

: Let F, be the empirical c.d.f. of i.id. X;,---, X, from a c.d.f. F on R (i)
Poo(Fny F) —as 0 as n — oo; (ii) E[v/nps (Fn, F)]* = O(1) for any s > 0.

. Let F,, be the empirical c.d.f. based on i.i.d. random variables Xi,---, X, from
acdfF e F. (i) pr,(Fu, F) —as 0; (ii) E[vnpL, (F,, F)] = O(1) if 1 < p < 2 and [{F(t)[1 —
F)]}P/2dt < oo if p > 2.

: For Xy,---, X, i.i.d. from F € %, the empirical c.d.f. F,, maximizes the nonpara-
metric likelihood function I(G) over G € Z.

Definition 3 (Empirical likelihoods): The nonparametric MLE can be extended to various sit-
uations with some modifications of {(G) and/or constraints on p;’s. Modifications of the likelihood
I(G) are called empirical likelihoods. An estimator obtained by maximizing an empirical likelihood
is then called a maximum empirical likelihood estimator (MELE).

Remark 1 (Estimation of F' with auxiliary information about F'): In some cases we have some
information about F. For instance, suppose that there is a known Borel function u from R? to R® such
that f xz)dF = 0. It is reasonable to expect that any estimate F of F has property f x)dﬁ =0,
which is not true for the empirical c.d.f F,,, since [‘u(z)dF, = 37"  u(X;) # 0 even if E[u(X;)] = 0.
Using the method of empirical likelihoods, a natural solution is to put another constraint in the process
of maximizing the likelihood. That is, we maximize {(G) subject to p; > 0,i =1,--- ,n,> " p; =1,
and Y, piu(x;) = 0 where p; = Pg({z;}). Using the Lagrange multiplier method, it can be shown
that an MELE of F is F(t) = Y1, pil(—co.q(Xi), where p; = n = [1 + M w(X,)] " i = 1,--- ,n and
An € R® is the Lagrange multiplier satisfying " | piu(X;) = £ 37" % =0.

. Let u be a Borel function on R? satisfying [ u(z)dF =0 and F be the MELE of F.
Suppose that U = Var(u(X,)) is positive definite. Then, for any m fixed distinct ¢, ,t,, € R%,
Val(E(ty), -, F(tm)) — (F(ty), - - ,F(tm))] —q Nim(0,3,), where ¥, = ¥ — WIU'W | ¥ is the
covariance matrix of /n[(E,(t1), -+, Fu(tm)) — (F(t1), -+ , F{tn)], W = W(t1), -+, W(tn)), and
W (t;) = Blu(X0) ey (X1))

5.2 Profile likelihoods, GEE, and GMM

Definition 1 (Profile likelihoods): Let 1(6,€) be a likelihood (or empirical likelihood), where
6 and & are not necessarily vector-valued. It mat be difficult to maximize the likelihood (6, &)
simultaneously over 6 and . For each fixed 0, let £(0) satisfy 1(6,£(6)) = sup, [(0,&). The function
1,(0) =1(0,£(0)) is called a profile likelihood function for 6. Suppose that ép maximizes [,,(¢). Then ép
is called a maximum profile likelihood estimator of #. Although this idea can be applied to parametric

models, it is more useful in semi-parametric models, especially when 6 is a parametric component

30



ESTIMATION IN NON-PARAMETRIC MODELS

and £ is a nonparametric component.

: Assume that X, -+, X, arei.i.d. random variables from an unknown
c.d.f. F and some X;’s are missing. Let §; = 1 if X is observed and §; = 0 if X is missing. Suppose
that (X;,0;) are i.i.d. and let w(z) = P(§; = 1|X; = z). If X; and 0; are independent, i.e. m(x) =7
does not depend on z, then the empirical c.d.f based on observed data, i.e., the c.d.f. putting mass r—!
to each observed X;, where r is the number of observed X;’s, is an unbiased and consistent estimator
of F, provided that 7 > 0. On the other hand, if 7(z) depends on x (called nonignorable missingness),
then the empirical c.d.f. based on observed data is a biased and inconsistent estimator of F'. In fact,
the empirical c.d.f. based on observed data is an unbiased estimator of P(X; < z|d; = 1), which is
generally different from the unconditional probability F(x) = P(X; < z). If both 7 and F are in
parametric models, then we can apply the method of maximum likelihood. For example, if 7(z) =
me(x) and F(x) = Fy(z) has a p.d.f. fy, where § and 9 are vectors of unknown parameters, then a
parametric likelihood of (8, 9) is 1(6,9) = [T, [me(x:) fo(z:)]° (1 —7)' 7%, where 7 = [ mo(x) fo(z)da.
computationally, it may be difficult to maximizing this likelihood, since 7 is an integral. Suppose
now that m(x) = my(x) is the parametric component and F' is the nonparametric component. Then
an empirical likelihood can be defined as 1(0, G) =[], [mo(z:)pi]® (1 — )1 =%, p; = Pe({z;}) subject
top; > 0,50 dips = 1,20, dips[me(x;) — 7w = 0,i =1, ,n. It can be shown that the logarithm
of the profile empirical likelihood for (#,7) with a Lagrange multiplier is Y., {d; log(mg(z;)) + (1 —
;) log(1 —m) —6;log(1+ A[mg(x;) —m])}. Under some conditions, it can be shown that the estimators
6,7 and \ obtained by maximizing this likelihood are consistent and asymptotically normal and that
the empirical c.d.f. putting mass p; = r~ {1 + A\[m;(X;) — 7]} " to each observed X; is consistent for
F'. The result can be extended when there is an observed covariate.

Definition 2 (Generalized estimating equation (GEE)): Assume that X3, --- , X,, are independent
random vectors, where the dimension of X; is d;,i = 1,--- ,n(sup, d; < c0), and that we are interested
in estimating 6, a k-vector of unknown parameters related to the unknown population. Let © C R* be
the range of 6, ; be a Borel function form R4 x© toR*,i = 1,--- ,n, and s,,(v) = >_i, ¥i(Xi,7),7 €
O. If 0 is estimated by beco satisfying sn(é) = 0, then 6 is called a GEE estimator. The equation
sn(y) = 0 is called a GEE.

Remark 1: Usually GEE’s are chosen so that E[s,(0)] = > E[¢;(X;,0)] = 0, where the
expectation E may be replaced by an asymptotic expectation if the exact expectation does not exist.

Proposition 1 (Consistency of GEE estimators): Suppose that X, -+, X, are i.i.d. from F and
¥; =1, a bounded and continuous function form R¢ x © to R*. Let g(t) = [ (x,t)dF(x). Suppose
that g(0) = 0 and dg(t)/dt exists and is of full rank at ¢ = 6. Then 6, —p 0.

Proposition 2 (Asymptotic normality of GEE estimators): /nVa /2(8 — 0) —4 N'(0, I;), where
sn(0) = Y0 ¥i(X:,0) and V,, = [Vs,(0)] "' Var(s,(0))[Vs, ()] 7.

Definition 3 (Generalized method of moments (GMM)): Suppose that we have a set of m >
k functions v;(z,0),j = 1,---,m such that Ey[¢);(X,0)] = 0 for all j and ;’s are not linearly
dependent, i.e., the m x m matrix whose (j, j)th element is Eg[1), (X, 8)1;/(X;, 0)] is positive definite,
which can usually be achieved by eliminating some redundant functions where 1;’s are linearly
dependent. Let G, (0) = (2 >0, ¢1(,0),--- , L 30" wm(xi,G))T,H € O. If m = k, a solution to
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G,(0) = 0 is a GEE estimator. If m > k, a solution to G, () = 0 may not exist. Then we can
minimize GZ(0)G,,(#), using a data driven procedure.

Definition 4 (GMM algorithm): A GMM estimate of # can be obtained using the following two-
step algorithm (the second step is to gain efficiency). (1) Obtain #) by minimizing GZ(6)G,,(6)/2
over § € ©. (2) Let W be the inverse matrix of the m x m matrix whose (j,;’) element is equal
to 257 (@, 0W)hyi (w5, 01)). The GMM estimate 0 is obtained by minimizing GT ()W G,,(0)/2
over f € ©.

Proposition 3 (Asymptotic properties of GMM estimators): v/n(6, —0) =4 N(0, (BTS1B)~1),
where G/, () —, B and ¥ = Var(G(X3,6)).

6 Hypothesis Tests

6.1 Neyman-Pearson lemma and monotone likelihood ratio

Definition 1 (Theory of testing hypotheses): X: a sample from a population P € &. Based on
the observed X, we test a given hypothesis Hy : P € &, vs H, : P € &, where &y and &, are two
disjoint subsets of & and HPyU F; = . A test for a hypothesis is a statistic T'(X) taking values in
[0,1]. When X = x is observed, we reject Hy with probability T'(z). If T(X) =1 or 0 a.s. &, then
T(X) is a nonrandomized test; otherwise 7'(X) is randomized. For a given test T(X), the power
function of T'(X) is defined to be Br(P) = E[T(X)], P € &, which is the type I error probability of
T(X) when P € &, and one minus the type II error probability of T'(X) when P € #;.

Definition 2 (Significance tests): With a sample of a fixed size, we are not able to minimize two
error probabilities simultaneously. Our approach involves maximizing the power Sr(P) over all P €
2, (i.e., minimizing the type II error probability) and over all tests 1" satisfying sup pe 5, 8r(P) < o,
where « € [0, 1] is a given level of significance. The left-hand side of the last expression is defined to
be the size of T

Definition 3: A test T} of size « is a uniformly most powerful (UMP) test if and only if Sz, (P) >
Br(P) for all P € &, and T of level a.

Proposition 1 (Using sufficient statistics): If U(X) is a sufficient statistic for P € &, then for
any test T'(X), E(T|U) has the same power function as T" and, therefore, to find a UMP test we may
consider tests that re functions of U only.

: Suppose that &y = {P} and & = {P,}. Let f; be the

p.d.f of P; w.r.t. a o-finite measure v (e.g., v = Py + P;), j = 0,1. (i) Existence of a UMP test. For
1 f1(X) > efo(X)

every «, there exists a UMP test of size a, which is T, (X) = v fi(X) = cfo(X) where vy € [0, 1]
0 fi(X) < cfo(X)

and ¢ > 0 are some constants chosen so that E[T,(X)] = a when P = P, (¢ = oo is allowed). (ii)

L fi(X) > cefo(X) N

0 fi(X) <cfo(X)
: Suppose that X is a sample of size 1, &y = {Py}, and &, = {P;}, where P,

Uniqueness. If T,, is a UMP test of size a, then T..(X) = s. L.
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is N(0,1) and P, is the double exponential distribution DE(0,2) with the p.d.f 4=te~1*l/2. Since
P(fi(X) = cfo(X)) = 0, there is a unique nonrandomized UMP test. By theorem 1, the UMP test
T.(x) =1 if and only if %eﬁ"x' > ¢? for some ¢ > 0, which is equivalent to |z| > ¢ or |z| < 1 —t for
some ¢ > 3. Suppose that o < 3. To determine ¢, we use a = Eo[T,(X)] = Po(|X| > t) + Po(|X]| <
1—1t). Ift <1, then Py(|X| >t) > Py(|X| > 1) =0.3374 > a. Hence ¢ should be larger than 1 and
a=Py(|X|>t)=®(—t)+1—®(t). Thus, t = (1 — /2) and T, (X) = I(1,00)(|X]). Note that it
is not necessary to find out what c is.

: Suppose that there is a test T, of size a such that for every P, € &2, T, is UMP
for testing Hy versus the hypothesis P = P;. Then T, is the UMP for testing H, versus H;.

Definition 4: Suppose that the distribution of X is in & = {P, : § € O}, a parametric family
indexed by a real-valued 6, and that & is dominated by a o-finite measure v. Let fy = dPy/dv. The
family 2 is said to have monotone likelihood ration in Y (X) (a real-valued statistic) if and only if,
for any 6, < 0, fo,(x)/fo,(x) is a nondecreasing function of Y (x) for values x at which at least one
of fy,(z) and fy,(x) is positive.

: Let 0 be real-valued and 7(f) be a nondecreasing function of §. Then the one-
parameter exponential family with fy(x) = exp{n(0)Y (z) —&(6) }h(x) has monotone likelihood ration
in Y(X).

: Suppose that X has a distribution in & = {P : § € ©}(0 C R) that has monotone
likelihood ratio in Y (X). Consider the problem of testing Hy : 6 < 0y versus H; : 6 > 0y, where 6, is

1 Y(X)>c¢
a given constant. (i) There exists a UMP test of size o, which is given by T,(X) = ¢ ~ Y(X)=c

0 Y(X)<e
where ¢ and «y are determined by S, (6y) = «, and Br(0) = E[T'(X)] is the power function of a test
T. (ii) Br,(0) is strictly increasing for all 0’s for which 0 < fSr,(0) < 1. (iii) For any 6 < 6y, T\
minimizes Sr(0) among all tests T satisfying Sr(0y) = «. (iv) Assume that Py(fe(X) = cfq,(X)) =0
for any 6 > 6y and ¢ > 0, where fy is the p.d.f. of Py. If T is a test with 5r(6y) = Br, (o), then for
any 6 > 0y, either B7(0) < Br () or T = T, a.s. Py. (v) For any fixed 6, T, is UMP for testing
Hy: 0 <6, versus Hy : 0 > 0y, with size Br, (61).

Suppose that X has a p.d.f. in a one-
parameter exponential family with 1 being a strictly monotone function of 6. If 5 is increasing,
then T, given by Theorem 3 is UMP for testing Hy : 8 < 6y versus H; : 8 > 6y, where v and c are
determined by Sr, (o) = a. If 1 is decreasing or Hy : 6 > 0y(H; : 0 < 6,), the result is still valid by

reversing inequalities in the definition of T.

6.2 UMP tests and unbiased tests

: Suppose that the distribution of X is in a parametric family P indexed by a real-

valued 6 and that P has monotone likelihood ratio in Y (X). If ¢ is a nondecreasing function of Y,
then ¢(0) = E[(Y)] is a nondecreasing function of 6.

Proposition 1 (Generalized Neyman-Pearson lemma): Let fi,---, f,,41 be Borel functions on

RP integrable w.r.t. a o-finite v. For given constants ti,--- ,t,, let 7 be the class of Borel
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functions ¢ (from R? — [0,1]) satisfying [ ¢f;dv < t;,4 = 1,--- ,m, and Z be the set of ¢’s
in 7 satisfying f(bfidy = t;,0 = 1,--- ,m. If there are constants c¢i,--- , ¢, such that ¢.(x) =

1 fa(x) >c )+ -+ cemfmlx
fmir(@) > eLfa(@) fn() is a member of .%, then ¢, maximizes [ ¢f,,41dv over

0 ferl(x) < lel(x) ++ Cmfm(x)
¢ € Jp. If ¢; >0 for all i, then ¢, maximizes [ ¢ fr,11dv over ¢ € T .

: Let fi,-- -, fm and v be given by Proposition 1. Then the set M = {([ ¢fidv, -, [ ¢fmdv) :
¢ is from R? — [0, 1]} is convex and closed. If (t1,--- ,t,,) is an interior point of M, then there exist
constant ¢, , ¢, such that the function ¢, defined in Proposition 1 is in 7.

Definition 1 (Two-sided hypotheses): The following hypotheses are called two-sided hypotheses:
Hy:0 <60y0r0 >0, versus Hy : 01 < 0 <0y, Hy: 0, <0 < 0 versus H; : 0 < 0, or 0 > 0,
Hy : 0 = 0y versus H; : 0 #£ 6y, where 6,0, 05 are given constants and 6; < 65.

: Suppose that X has a p.d.fin a one-parameter
exponential family, i.e., the p.d.f is fy(xz) = exp{n(8)Y (x) — £(0)}h(x) w.r.t. a o-finite measure,
where 7 is a strictly increasing function of 6. (i) For testing hypotheses Hy : 0 < 61 or 6 > 0,

1 a<Y(X)<c
versus Hy : 6 < 0 < 0y, a UMP test of size a is Ty (x) = ¢ ; Y(X)=¢;,i=1,2, , where
0 YX)<corY(X)>c
¢;’s and ~;’s are determined by Br, (61) = Br.(02) = «. (ii) Tx minimizes B (6) over all § < 6,6 >
0y, and T satisfying fr(61) = Br(6:) = «. (iii) If T, and T,, are two tests satisfying T'(x) =
1 a<YX)<e
v Y(X)=¢,i=1,2, and Bz, (01) = Pr.,(01) and if the region {T,. = 1} is to the right
0 YX)<corY(X)>c
of {T, = 1}, then Br (01) < Br,.(0) for 8 > 0, and Br, (6) > Pr,..(0) for 6 < ;. If both T, and T..
1 a<Y(X)<e
satisfy T'(z) = ¢ Y(X)=c¢,i=1,2, and fBr, (01) = Br,.(02) = a, then T, = T,, a.s. L.
0 YX)<corY(X)>c

: Let Xi,---,X, be iid. from NV (6,1). By Theorem 3, a UMP test for testing
Hy:0<0y0r0>0;versus Hy : 01 <0 < 0yis T, (X) = I(Cl’CQ)(X'), where ¢;’s are determined by
(v/n(c2 — 61)) — 2(v/n(er — 61)) = a and (y/n(cx — 02)) — 2(V/n(ecx — 02)) = a.

Remark 1 (Nonexistence of UMP tests): Unfortunately, a UMP test does not exist in general for
testing hypotheses Hy : 61 < 0 < 05 versus Hy : 0 < 6y or 0 > 05, Hy : 0 = 0y versus Hy : 0 # 0.

Definition 2: Let « be a given level of significance. A test T for Hy : P € &, versus P € &, is
said to be unbiased of level « if and only if 87 (P) < o, P € &y and fr(P) > o, P € &;. A test of
size « is called a uniformly most powerful unbiased (UMPU) test if and only if it is UMP within the
class of unbiased tests of level a.

Definition 3 (Similarity): Consider the hypotheses Hy : 0 € ©¢ vs Hy : 0 € ©1. Let « be a given
level of significance and let ©y; be the common boundary of ©y and 4, i.e., the set of points # that
are points or limit points of both ©y and ©;. A test T is similar on Oy, if and only if 37 (P) = « for
all 6 € O;.
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Remark 2: It is more convenient to work with similarity than to work with unbiasedness for
testing Hy : 0 € ©g vs Hy : 0 € O1.
: Consider hypotheses Hy : 6 € Oy vs H; : § € ©;. Suppose that, for every T, fr(P)
is continuous in #. If T, is uniformly most powerful among all similar tests and has size «, then T,
is a UMPU test.

6.3 Likelihood ratio and asymptotic tests

Definition 1: Let () = fo(X) be the likelihood function. For testing Hy : 6 € Og versus
H; : 0 € O, a likelihood ratio (LR) test is any test that rejects Hy if and only if A(X) < ¢, where
c € [0,1] and A(X) is the likelihood ratio defined by A(X) = supyce, [(#)/supyee 1(0).

Remark 1 (Optimality): When a UMP or UMPU test exists, an LR test is often the same as
this optimal test.

Proposition 1: Suppose that X has a p.d.f. in one-parameter exponential family: fo(z) =
exp{n(0)Y (z)—&(0) }h(z) w.r.t. a o-finite measure v, where 7 is a strictly increasing and differentiable
function of 6. (i) For testing Hy : 6 < 0y versus H; : 6 > 0, there is an LR test whose rejection region
is the same as that of the UMP test T.. (ii) For testing Hy : 6 < 01 or 6 > 6, versus Hy : 6; < 0 < 65,
there is an LR test whose rejection is the same as that of the UMP test T.. (iii) For testing the
other two-sided hypotheses, there is an LR test whose rejection region is equivalent to Y (X) < ¢; or
Y (X) > ¢y for some constants ¢; and co.

Consider the testing problem Hy : 6 = 6y versus H; : 0 # 6, based on i.i.d.

X1, , X, from the uniform distribution U(0, ). We now show that the UMP test with rejection

region X(,) > 0 or X(,) < 6pa'/™ is an LR test. Note that /() = 07" 1(x,,).00)(0). Hence A\(X) =

(Xn)/00)"  Xn) <o

0 Xy > 0o
ensures that the LR test has size a.

Definition 2 (Asymptotic tests): Let X = (X3,---,X,,) be a sample from P € & and T,,(X) be
a test for Hy : P € & versus Hy : P € &2;. (i) If limsup,, ar, (P) < « for any P € &, then « is

an asymptotic significance level of T,,. (ii) If lim,, o SUpp¢ 5, v, (P) exists, it is called the limiting

and A\(X) < c is equivalent to X,y > 0y or X(,)/0p < c*/". Taking ¢ = o

size of T,,. (iii) T, is consistent iff the type II error probability converges to 0.

Remark 2: If &, is not a parametric family, the limiting size of T,, may be 1. This is the reason
why we consider the weaker requirement in (i).

Definition 3: If o € (0,1) is pre-assigned level of significance for the problem, then a consistent
test T,, having an asymptotic significance level « is called asymptotically correct, and a consistent
test having limiting size « is called strongly asymptotically correct.

: Assume the conditions of Theorem 1
in section 4.6. Suppose that Hy : § = g(1), where ¥ is (k — r)-vector of unknown parameters and
g is a continuously differentiable function from R*~" to R* with a full rank dg(¥)/09. Under Hy,
—2log A, =4 X2, where A, = \(X) and x? is a random variable having the chi-square distribution
x2. Consequently, the LR test with rejection region A, < e~ Xra/2 hag asymptotic significance level

o, where x7 , is the (1 — a)th quantile of the chi-square distribution x?.
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: Assume the conditions of Theorem 1 in section 4.6. R(f) is a continuously differen-
tiable function from R¥ to R”, 0 is an MLE or RLE of 6, 6 is an MLE or RLE of § under Hy : R(#) = 0.
(i) Under Hy : R(0) = 0, Wald’s test W, := [R(0)]"{[C()]T[L.(A)]*C(0)} ' R(0) —4 x> where
C(0) = OR(0)/09. Therefore, the test rejects Hy if and only if W,, > xZ , has asymptotic significance
level a, where x? , is the (1 —a)th quantile of the chi-square distribution x?. (ii) The result in (i) still
holds if W, is replaced by Rao’s score test R, := [sn(g)]T[In(g)]’lsn(g) where s,,(0) = 0logl(6)/06.

6.4 Asymptotic chi-square tests

Definition 1 (Testing in multinomial distributions): Consider n independent trials with & possible
outcomes for each trial. Let p; > 0 be the probability that the jth outcome occurs in a given trial
and X; be the number of occurrences of the jth outcome in n trials. Then X = (Xy,---, X}) has the
multinomial distribution with the parameter p = (py,--- ,px). Let & = (0,---,0,1,0,---,0), where
the single nonzero component 1 is located in the jth position if the ith trial yields the jth outcome.
Then &, -+ ,&, are i.id. and X/n =& =" &/n. X/n is an unbiased estimator of p and by the
CLT, Z,(p) = vn(X — p) = v/n(€ — p) =4 Ni(0,%), where & = Var(X//n) is a symmetric k x k
matrix whose ith diagonal element is p;(1 — p;) and (7, j)th off-diagonal element is —p;p;. We first
consider the problem of testing Hy : p = pg versus Hy : p # po where po = (po1,- - , Pox) is a known
vector of cell probabilities.

Definition 2 (x? tests): For testing Hy : p = pg vs Hy : p # po, a class of tests related to the
asymptotic tests, a popular test is based on the following x2-statistic: x? = 2521 % =
[|1D(po) Zn(po)||?, where D(c) with ¢ = (c1,---,c) is the k x k diagonal matrix whose jth di-
/2

agonal element is cj_1 Another popular test is based on the following modified y2-statistic:

X2 =30k, Bl — (|D(X /) Z, (o)

: Let ¢ = (/p1, -+ ,+/Pr) and A be a k x k projection matrix. (i) If A¢ = a¢, then
[(Z,(p)]T D(p)AD(p)Z,(p) —4 X2, where x? has the chi-square distribution x? with r = tr(A) —a. (ii)
The same result holds if D(p) in (i) is replaced by D(X /n).

: Let Y7,---,Y, beiid. from F. Consider the problem of
testing Hy : F' = Fy versus H; : F' # Fy, where Fj is a known c.d.f. One way to test Hy : F' = Fj is
to partition the range of Y; into k disjoint events Ay, --- , Ay and test Hy : p = po with p; = Pr(4;)
and po; = Pr,(A4;),j =1,--- , k. Let X; be the number of ¥;’s in A;,j = 1,--- ,k. Based on Xj’s,
the y2-tests discussed previously can be applied.

Definition 3 (Generalized y?-statistics): The generalized y2-statistics x? and x? are defined to
be the previously defined y?*-statistics with po;’s replaced by pj(é)’s, where § € © C R*(s < k) and
0 is an MLE of @ under H,.

: Under Hy : p = p(f), the generalized x?-statistics converge in distribution to x3_,_;.

Definition 4 (Testing independence): Testing independence of {A; : j = 1,--- ,¢} and {B;,i =
1,---,r}is equivalent to testing hypotheses Hy : p;; = p;.p.; for all i, j versus Hy : p;; # p;.p.; for some
i,j, where p;; = P(A;NB;) = E[X;;]/n,p;. = P(B;) andp; = P(A;),i=1,--- ,r,j=1,---,c. Under
Hy, MLE’s of p;. and p.; are X;. = n;/n and X jm;/n, respectively, i = 1,--- ,7,j = 1,--- ,c. The

number of free parameters is rc—1. Under Hy, the number of free parametersis r—1+c—1 = r+c—2.
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The differnece of the two is (r —1)(c—1). Then the x*-test rejects Ho when x* > x{._;)._1).. Where
X2 =2 i % and X{._1)(._1),o 18 the (1—a)th quantile of the chi-square distribution
of X{o—1)(e-1)-
Remark 1 (Construction of asymptotic tests): A simple method of constructing asymptotic tests
(for almost all problems, parametric or nonparametric) for testing Hy : 6 = 6y versus H; : 6 # 6,
where 0 is a vector of parameters, is to use an asymptotically normally distributed estimator 6. Let
én be an estimator of 6 based on a sample size n from P. Suppose that under Hy, Vn_1/2(én —0) —q
N (0, I,), where V,, is the asymptotic covariance matrix of 0,,. If V,, is known when 6 = 6, then we
define a test with rejection region (6, —00)TV, (6, — 6,) > X.a» Where x7 , is the (1 —a)th quantile
of the chi-squared distribution 2. If V,, depends on the unknown population P even if Hy is true
(0 = 0o), then we have to replace V,, by an estimator Vn If Vn is consistent, then the resulting test
still has asymptotic significance level a.
Assume that anlﬂ(én —0) —4 Ni(0,I;), holds for any P. Assume also that
Ai[Vn] — 0, where A,[V,] is the largest eigenvalue of V,,. (i) The test having rejection region
(0, — 00)TV, (6, — 69) > Xr.o With a known V,, (or with V,, replaced by a consistent estimator Vi)
is consistent. (ii) If we choose a = a,, — 0 as n — 00 and X3 ;_,, A+[Va] = o(1), then the test in (i)

is Chernoff-consistent.

7 Confidence Sets

7.1 Pivotal quantities and confidence sets

Definition 1 (Confidence sets): X: a sample from a population P € &. § = §(P): a functional
from 2 to © C R* for a fixed interger k. C(X): a confidence set for 0, a set in Bg depending
only on X. The confidence coefficient of C(X) : infpe o P(f € C(X)). If the confidence coefficient of
C(X)is > 1— « for fixed o € (0,1), then we say that C(X) has confidence level 1 — v or C'(X) is a
level 1 — « confidence set.

Definition 2: A known Borel function h of (X, 6) is called a pivotal quantity if and only if the
distribution of h(X,#) does not depend on P.

Construction: First, find two constants ¢; and c¢3 such that P(e; < h(z,0) < ¢3) > 1 — a. Next,
define C(X) ={0 € © :¢; < h(X,0) < co}. Then C(X) is a level 1 —a confidence set. The confidence
coefficient of C'(X) may not be 1 — a. If (X, €) has a continuous c.d.f., then we can choose ¢;’s such
that the equality in the last expression holds and the confidence set C'(X) has confidence coefficient
1—oa.

Computation: When h(X,6) and ¢;’s are chosen, we need to compute the confidence set C(X) =
{c1 < h(X,0) < ¢3}. This can be done by inverting ¢; < h(X,0) < c¢o. For example, if 6 is real-
valued and h(X, ) is monotone in § when X is fixed, then C(X) = {0 : §(X) < 6§ < §(X)} for some
0(X) < 0(X), i.e., C(X) is an interval (finite or infinite). If A(X, @) is not monotone, then C'(X) may
be a union of several intervals.

: Suppose that Xy, .-, X, are i.i.d. with a Lebesgue p.d.f.

1 r—

~f(**), where u € R,0 > 0, and f is a known Lebesgue p.d.f. Consider first the case where o is
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known and 6 = . X — p is a pivotal quantity. Let ¢; and ¢, be constants such that P(c; < X —pu <
c2) =1—a, then C(X) ={pu: X —cy <pu< X —c;}. Consider next the case where y is known and
0 = 0. S/o is a pivotal quantity, where S? is the sample variance. Let ¢; and ¢, be chosen such that
P(c; < S/o <c3) =1—a. If both ¢;’s are positive, then C(X) = {0 :S/ca < 0S/c1} =[S/, S/c1]
is a finite interval. Similarily, if ¢; = 0 or ¢a = oo, then C(X) = [S/ca,0) or (0,5/c¢;]. When
f# = o and p is also known, S/o is still a pivotal quantity and, hence, confidence intervals of o
based on S are still valid. Finally, we consider the case where both pu and ¢ are unknown and
0 = p. There are still many different pivotal quantities, but the most commonly used pivotal
quantity is +(X) = /n(X — u)/S. The distribution of ¢(X) does not depend on (u,c). When f
is normal, ¢(X) has the t-distribution ¢, ;. A confidence interval for p based on #(X) is of the
form {p: ¢ < V(X —p)/S < o} = [X — 25/v/n, X — ¢2S/+/n], where ¢;’s are chosen so that
Ple; <t(X)<e)=1-qu

: Let Xy, -+, X, be iid. random variables from the uniform distribution U(0, ).
Consider the problem of finding a confidence set for #. Note that X(,)/6 has the Lebesgue p.d.f.
na™ 1,1 (x). Hence ¢;’s should satisfy ¢ — ¢f =1 — . The resulting confidence interval for 6 is
5" Xy, e X

Proposition 1 (Existence of pivotal quantities in parametric problems): Let T'(X) = (T1(X), -+, T5(X))
and 17y, --- ,T, be independent statistics. Suppose that each 7; has a continuous c.d.f. Fr, g indexed
by 6. Then h(X,0) = [];_, Fr, o(T;(X)) is a pivotal quantity.

: Suppose that P is in a parametric family indexed by a real-valued 6. Let T'(X)
be a real-valued statistic with c.d.f. Fry(t) and let o; and «as be fixed positive constants such that
o +ao = a < 5. (i) Suppose that Fry(t) and Frg(t—) are nonincreasing in 6 for each fixed ¢. Define
0 =sup{f : Frg(T) > o} and § = inf{0 : Fre(T—) < 1— ay}. Then [§(T),0(T)] is a level 1 — «
confidence interval for 6. (ii) If Fr4(t) and Fr¢(t—) are nondecreasing in 6 for each ¢, then the same
result holds with @ = inf{0 : Fro(T) > a1} and § = sup{0 : Fro(T—) < 1 — as}. (iii) If Frp is a
continuous c.d.f. for any 6, then Fry(7T) is a pivotal quantity and the confidence interval in (i) or
(ii) has confidence coefficient 1 — «.

Definition 3 (Asymptotic criterion): In some problems, especially in nonparametric problems, it
is difficult to find a reasonable confidence set with a given confidence coefficient or confidence level
1—a. A common approach is to find a confidence set whose confidence coefficient or confidence level
is nearly 1—a when the sampel size n is large. A confidence set C(X) for 6 has asymptotic confidence
level 1 — o if liminf,, P(# € C(X)) > 1 —a for any P € . If lim,,_,o. P(# € C(X)) =1 — «a for any
P e &, then C(X) is a 1 — a asymptotically correct confidence set.

Definition 4 (Asymptotically pivotal quantities): A known Borel function of (X, 0), h,(X,0), is
said to be asymptotically pivotal iff the limiting distribution of 4, (X, #) does not depend on P. Like a
pivotal quantity in constructing confidence sets with a given confidence coefficient or confidence level,
an asymptotically pivotal quantity can be used in constructing asymptotically correct confidence sets.

: Suppose that X;, -+, X, are i.i.d. random vectors having
a c.df. F on R? and that the unknown parameter of interest § = g(u), where p = E(X;) and
g is a known differentiable function from R¢ to R¥, k < d. From the CLT, 6, = g(X) satisifies
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Vi 2(6,—60) —q Niw(0, 1), Vo = [Vg(1)] T Var(X1)Vg(p) /n. A consistent estimator of the asymptotic
covariance matrix Vj, is V,, = [Vg(X)]782Vg(X)/n. Thus, C(X) = {6 : ||V, /28, — 0)|]> < Xrob>

is a 1 — o asymptotically correct confidence set for 6.

7.2 Inverting acceptance regions of tests, UMA and UMAU confidence sets

Remark 1 (Confidence sets and hypothesis tests): Another popular method of constructing
confidence sets is to use a close relationship between confidence sets and hypothesis tests. For any
test T, the set {x : T'(x) # 1} is called the acceptance region. This terminology is not precise when
T is a randomized test.

: For each 0y € ©, let Ty, be a test for Hy : 8 = 6, with significance level o and
acceptance region A(fp). For each z in the range of X, define C(z) = {0 : z € A(#)}. Then C(X)
is a level 1 — a confidence set for 6. If T}, is nonrandomized and has size « for every 6, then C(X)
has confidence coefficient 1 — a.

Proposition 1: Let C(X) be a confidence set for 6 with confidence level 1 — a. For any 6, € O,
define a region A(6y) = {x : 6y € C(x)}. Then the test T'(X) =1 — I4(p,)(X) has significance level «
for testing Hy : 6 = 6y versus some Hj.

: Suppose that X has the following p.d.f. in a one-parameter exponential family:
fo(x) = exp{n(0)Y (x) — £(0) }h(x), where 6 is real-valued and 7n(f) is nondecreasing in §. Consider
Hy:0 =06, and Hy : 0 > 6. The acceptance region of the UMP test of size o is A(0y) = {z: Y (x) <
¢(0p)}. It can be shown that ¢(6) is nondecreasing in 6. Inverting A(€), we obtain C(X) = [#(X), c0)
or (§(X), c0), a one-sided confidence interval for 6 with confidence level 1 —a. 0(X) is a called a lower
confidence bound for 6. If Hy : 0 = 6y and H; : 6 < 6, are considered, then C(X) = {0 : Y(X) > ¢(0)}
and is of the form (—oo,#(X)] or (—o0,0(X)). 8(X) is called an upper confidence bound for 6.

Remark 2 (Confidence sets related to optimal tests): For a confidence set obtained by inverting
the acceptance regions of some UMP or UMPU tests, it is expected that the confidence set inherits
some optimality property.

Definition 1: Let 8 € © be an unknown parameter and ©’ be a subset of © that does not contain
the true parameter value 6. A confidence set C(X) for 6 with confidence coefficient 1 — « is said
to be ©’-uniformly most accurate iff for any other confidence set C;(X) with confidence level 1 — «,
P eC(X)) <Pl e€Ci(X)) forall 9 € ©. C(X) is UMA iff it is ©-UMA with ©" = {6}°.

: Let C(X) be a confidence set for § obtained by inverting the acceptance regions of
nonrandomized tests Ty, for testing Hy : @ = 0y versus H; : 6 € ©y,. Suppose that for each 6y, Tp, is
UMP of size @. Then C'(X) is ©’-UMA with confidence coefficient 1 — «, where ©" = {0’ : § € O/ }.

Definition 2: Let 8 € © be an unknown parameter, ©’ be a subset of © that does not contain
the true parameter value 6, and 1 — o be a given confidence level. (i) A level 1 — « confidence
set C(X) is said to be ©'-unbiased (unbiased when ©" = {6}°) iff P(#' € C(X)) < 1 — «a for
all " € ©. (ii) Let C'(X) be a ©'-unbiased confidence set with confidence coefficient 1 — a. If
PO e C(X)) <P € Ci1(X)) for all & € O holds for any other ©’-unbiased confidence set C(X)
with confidence level 1 — «, then C(X) is ©’-uniformly most accurate unbiased (UMAU). C(X) is
UMAU if and only if it is ©'-UMAU with ©’ = {#}°.
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: Let C(X) be a confidence set for § obtained by inverting the acceptance regions of
nonrandomized tests Ty, for testing Hy : 8 = 0y versus H; : 6 € Op,. If Ty, is unbiased of size « for
each 6y, then C(X) is ©’-unbiased with confidence coefficient 1 — «, where ©' = {§' : 6 € Oy }. If Tj,
is also UMPU for each 6y, then C(X) is ©'-UMAU.

Definition 3: Consider a sample X from a populationn in a parametric family dominated by a
o-finite measure. Let fy(z) be the p.d.f. of X and #(#) be a prior p.d.f. w.r.t. a o-finite measure A
on (0, %e). Let p,(0) = fo(x)n(8)/m(x) be the posterior p.d.f. w.r.t. A, where z is the observed X
and m(z) = [, fo(z)m(0)dX. For any a € (0,1), a level 1 — « credible set for § is any C' € Be with
Pyo(0 € C) = [, po(0)dX > 1 — . A level 1 — a highest posterior density (HPD) credible set for 6
is defined to be the event C(z) = {6 : p.(0) > ¢}, where ¢, is chosen so that fC(:c) P (0)dA > 1 — a.

Let Xi,---,X, be iid. as N(6,0%) with an unknown # € R and a known
o?. Let m(0) be the p.d.f. of N(ug,03) with known gy and of. Then p,(f) is the p.d.f. of
N (14 (), c*), where p,(z) = naé’%uo + #’ﬁjgi and ¢? = ngg’i;, and the HPD credible set is
Clz) = {0 : e 0-m@P/2) > ¢ \omel = {6 : 10 — p.(x)| < V2¢[—log(cav2mc)]/2}. Let @ be the
standard normal c.d.f. The quantity v/2c[—log(c,v/2mc)]*/? must be czy_q 2, Where z, = ®~1(a),
since it is chosen so that Py, (C(z)) = 1 — a and Py, = N (p.(2),¢?). Therefore, C(z) = [p.(x) —

CZ1—ay2; 1+ (T) + C21_a)2)-

7.3 Lengths and expected lengths of confidence intervals

Remark 1 (Length criterion): For confidence intervals of a real-valued with the same confidence
coefficient, an apparent measure of their performance is the interval length. Shorter confidence
intervals are preferred, since they are more informative. When confidence intervals are constructed
by using pivotal quantities or by inverting acceptance regions of tests, choosing a reasonable class of
confidence intervals amounts to selecting good pivotal quantities or tests.

: Let 0 be a real-valued parameter and T'(X) be a real-valued statistic. (i) Let U(X)
be a positive statistic. Suppose that (T'—0)/U is a pivotal quantity having a Lebesgue p.d.f. f that
is unimodal at zo € R in the sense that f(z) is nondecreasing for z < x, and f(z) is nonincreasing
for x > xo. Consider the following class of confidence intervals for 6: ¢ = {[T — bU, T — aU] : a €
R,b € R, ff fle)de =1—a}. It [T —0.U,T —a.U] €€, fla.) = f(bs) >0, and a, < z¢ < b,, then
the interval [T'— b, U, T — a, U] has the shortest length within €. (ii) Suppose that 7" > 0,6 > 0, T'/6
is a pivotal quantity having a Lebesgue p.d.f. f, and that z?f(z) is unimodal at 2. Consider the
following class of confidence intervals for §: ¢ = {[b='T,a"'T] : a > 0,b > 0, fab f(x)dr =1 —a}.
If (0717, a;'T) € €, a2 f(a.) = b2f(b,) > 0, and a, < zg < b,, then the interval [b; T,a;'T] has the
shortest length within %'.

: Let Xy,-++, X, beiid. from N(u,o?) with unknown p and o2. Confidence intervals
for = u using the pivotal quantity /n(X — p)/S form the class " in Theorem 1(i) with f being
the p.d.f. of the t-distribution ¢,_1, which is unimodal at xy = 0. Since f is symmetric about 0,
f(a,) = f(b,) implies a, = —b,. Therefore, the equal-tail confidence interval [ X —t,_1 4/25/v/n, X +
tn—1,a/25/y/n] has the shortest length within €. If @ = p and o2 is known, then we replace S by o
and f by the standard normal p.d.f. The resulting confidence interval is [X —®~(1—a/2)o/v/n, X +
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®~!(1—a/2)a/+/n], which is the shortest interval of the form [X —b, X —a] with confidence coefficient
1 — a. Consider next confidence intervals for § = o2 using the pivotal quantity (n — 1)S5? /o2, which
form the class 4 in Theorem 1(ii) with f being the p.d.f. of the chi-square distribution x2_;.
Note that x?f(z) is unimodal, but not symmetric. By Theorem 1(ii), the shortest-length interval
within € is [b;'(n — 1)S?%,a; (n — 1)S?], where a. and b, are solutions of a?f(a,) = b2f(b.) and
f:* f(x)dx = 1 — a. Numerical values of a, and b, can be obtained. Note that this interval is not
equal-tail.

Remark 2 (Expected length): In a problem where a shortest-length confidence interval does not
exist, we may have to use the expected length as the criterion in comparing confidence intervals.

: Let X be a sample from P and C(X) be a confidence set for

6 € R*. Suppose that vol(C(z)) = fC(X) df’ is finite a.s. P. Then the expected volume of C(X) is
E[vol(C(X))] fe;&e' (0" € C(X))de'.

Remark 3: It follows from Theorem 2 that if C'(X) is UMA (or UMAU) with confidence coefficient
1 — «, then it has the smallest expected volume among all confidence sets (or all unbiased confidence

sets) with confidence level 1 — a.

7.4 Asymptotic confidence sets

Definition 1: Let X = (Xy,---,X,) be a sample from P € P, 0 be a k-vector of parameters
related to P, and C(X) be a confidence set for 6. (i) If liminf, P(§ € C(X)) > 1—« for any P € P,
then 1 — o is an asymptotic significance level of C(X). (ii) If lim, ., infpep P(0 € C(X)) exists,
then it is called the limiting confidence coefficient of C(X). (iii) If lim,,_,. P(# € C(X)) =1 — « for
any P € P, then C(X) is a 1 — a asymptotically correct confidence set.

Proposition 1: Let C;(X) = {6 : ||V Y20, — 0)|]2 < Xkat>J = 1,2, be the confidence sets
based on éjn satisfying V, 1/2( 0n, — 0) —q Ni(0,1), where an is consistent for Vj,,j = 1,2. If
det(Vy,) < det(Vay,) for sufficiently large n, then P(vol(Cy (X)) < vol(Cy(X))) — 1.

: Consider the case where & = {P : § € O} is a parametric
family dominated by a o-finite measure, where © C R*. Consider § = (¢,¢) and confidence sets
for ¥ with dimension 7. Let I(f) be the likelihood function based on the observation X = z. The
acceptance region of the LR test with Oy = {0 : ¥ = 9o} is A(0) = {z : (Do, Pg,) > e /21(0)},
where 1(§) = suppee [(0), (0, p9) = sup, (¥, ¢), and ¢, is a constant related to the significance
level a. If ¢, is chosen to be x7,, the (1 — a)th quantile of the chi-square distribution xZ, then
C(X) = {0 : 1(¥,p9) > e “/21(f)} is a 1 — o asymptotically correct confidence set. Note that
this confidence set and the one given by C(X) = {0 : ||Vn_1/2(én - 0)[I” < xi.} are generally
different. In many cases —I(¥, ) is a convex function of ¥ and, therefore, C'(X) based on LR tests
is a bounded set in R*. When O = {0 : 9 = 9y}, Wald’s test has acceptance region A(dy) = {z :
(9 — D) T{CT[L,(0)] 7' C} 1 (9 — o) < x2.}, where § = (9, %) is an MLE or RLE of 0 = (9,¢),
I,,() is the Fisher information matrix based on X, C*T = (I,0), and 0 is an 7 x (k — r) matrix of
0’s. The confidence set obtained by inverting A(d) is C(X) = {0 : |[Vi *(J — 9)||2 < Xt.o} With
V, = CT[I,()]*C. When ©y = {# : ¥ = 0y}, Rao’s score test has acceptance region A(dy) =
{2 : [s0(P0, Poo)|" [Ln(V0, $o,)] 50 (o, Poy) < XZ.a}, Where s,,(0) = Ologl(6)/06. The confidence set
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obtained by inverting A(¥) is also 1 — a asymptotically correct.
Remark 1 (Confidence intervals for quantiles): Let Xq,---, X, be ii.d. from a continuous c.d.f.
F on R and let § = F~!(p) be the pth quantile of ', 0 < p < 1. The general methods can be applied
to obtain a confidence set for @, but we introduce here a method that works particularly for quantile
problems.
: Let Xq,---, X, bei.i.d. from a continuous
c.d.f. F on R that is twice differentiable at 6 = F~'(p),0 < p < 1, with F’(f) > 0. Let F,, be the
empirical c.d.f. Let {k,} be a sequence of interges satisfying 1 < k,, < nand k, /n = p+o((logn)®/\/n)

)(1+5)/2

for some § > 0. Then X,y =6 + (k"/;),;gl;"(e) + O((log:’ﬁ/4 ) a.s.
: Assume the conditions in Theorem 1 and k,/n = p + cn™ /2 + o(n"'/?) with a
constant ¢. Then /n(Xy,) — F, ' (p)) —as. ¢/F'(0).

: Assume the conditions in Theorem 1. Let {k1,} and {ks,} be two sequences of

integers satisfying 1 < ki, < ko < 1, kin/n = p — 21_a/20/P(1 — p)/n + o(n"1?), and ko, /n =
P+ 21—as2/p(1 —p)/n + o(n~/?), where 2z, = ®(a). Then th confidence interval C(X) =
[X(k1,)> X(ks)] has the property that P(f € C(X)) does not depend on P and lim,,_, infpc o P(0 €

C(X)) = lim, o P(0 € C(X)) =1 — . Furthermore, the length of C(X) = Q'Zl_;f?e— V)\Z/)%FP) +o()

a.s.

7.5 Variance estimation, replication, jackknife, and bootstrap

Motivation: To evaluate and compare different estimators, we need consistent estimators of
variances or asymptotic variances of estimators. Traditional approach to estimate Var(é): Derivation
and substitution. (i) First, we derive a theoretical formula; (ii) Approximation (asymptotic theory)
is usually needed; (iii) The formula may depend on unknown quantities; (iv) We then substitute
unknown quantities by estimators.

Method 1 (The d-method): Yi,---,Y, are ii.d.(k-dimensional). 8 = g(u),0 = g(V), Var(d) ~
[Vg(1)]"Var(Y)[Vg(u)]. An estimator of Var(0) is V,, = [Vg(¥)]T(52/n)Vg(Y).

Method 2: Suppose we can independently obtain B copies of the data set X, say X1!,---, X5,
Then we can calculate §* = (X°),b = 1,---, B. Variance of § can be estimated as £ 3, (6" —
L5762, No derivation is needed.

Definition 1 (Jackknife): Consider pseudo replicates X® = (X1, -, X; 1, Xis1,++ » Xn), i =
1,--- ,n. Let é_i be the same estimator as én but based on X*,i = 1,--- ,n. Since én and 9_1, e ,é_n
estimate the ame quantity, the following “sample variance” can be used as a measure of the variation of
0,,: -1 Z?Zl(é,i—énP, 0, =250, _;. If 6,, = X is the sample mean, §_;—0, = (n—1)"1(X —X;)
and 2= Y0 (0_;—0,)% = % Thus, the correcttion factor (n—1)2/n should be multiplied, which
leads to the jackknife variance estimator of Var(f,): V; = o=l S (O —0,)2

: Let Xy, -+, X, be iid. random d-vectors from F with finite 4 = E(X;) and
Var(X;), and let 0, = g(X). Suppose that Vg is continuous at p and Vg(u) # 0. Then the jackknife
variance estimator VJ is strongly consistent for Var(én).

Definition 2 (Bootstrap): Create bootstrap pseudo-replicate datasets X*1 ...  X*P randomly

generated from X. Let 6*® be the same as an estimator 0 but based on X**.b = 1,---,B. Is
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= Zle(éb -+ ZzB:1 012 still a valid estimator of Var(f)? In fact, the cdf G(t) = P(§ — 0 < t) can
be estimated as & Zszl I(0*0 — 0 < t) = #otbs Sud‘ghm b —b<t,

Remark 1 (A heuristic description for the bootstrap): &2: the population producing data X.
2 an estimated of the population based on data X. X*: the bootstrap data produced by &. Real
world: & = X = 6 = 0(X). Bootstrap: & = X* = §* = (X*). If 2 is close to 2, then G(t) is
close to G(t) and Var*(6*) is close to Var(f).

Definition 3 (Parametric bootstrap): Let Xi,---, X, be i.i.d. with a c.d.f. Fy where 6 is an

unknown parameter vector and Fy is known when 6 is known. Let 6 be an estimator of 6 based on
X = (X1, ,X,). Parametric bootstrap data set X* = (X7, .-, X}) is obtained by generating
iid. X7,---, X from Fj.

. Let Fy(x) = Fo(*+£), where pp = E(X;),0% = Var(Xy)
and Fy is a known cdf. Let X be the sample mean, S? be the sample variance, and T' = @ =
Vi3 oi &zt The distribution of 7' does not depend on any parameter. Let 0 = (X,5?) generate
iid. Xfi=1,---,n from Fj. Then (X; — X)/S ~ Fo, T* = ya Y, 5% o T

Definition 4 (Nonparametric bootstrap): Without any model, we can apply the simple nonpara-
metric bootstrap. If X = (Xq,---,X,,), X1, -+, X, are i.i.d., then & is the cdf of X; and P is the

empirical cdf based on Xy, -, X,. If we generate i.i.d. bootstrap data X7, ---, X* from @, then it

is the same as taking a simple random sample with replacement from X.

Proposition 1 (Property of Var*(§*)): Consider the estimation of g(u), where u = E(X;) and
g is a continuously differentiable function. Our estimator is 6 = g(X). The bootstrap analog is
0* = g(X*). When n is large, g(X*) ~ g(X) + Vg(X)(X* — X), and Var*(0*) = Var[g(X*)] ~
Vg(X)Var(X* — X)Vg(X)" ~ 251Vg(X)S5?Vg(X)T.

7.6 Bootstrap confidence intervals

Remark 1: We want to find limits § and @ such that P(8 < ) = P(§ < ) = 1 — a. Traditional
asymptotic approach is G(t) — ®(t/0),n — oo where ® is the standard normal cdf, o is an unknown
scale parameter. Let ¢ be a consistent estimator of o, then G(6t) — ®(t). Normal approximation
100(1 — @)% confidence limits are 6y = 0 — 621_o/\/1, 05 = 0 + 621_0/ /7.

Definition 1 (Hybrid bootstrap): A bootstrap estimator of G(t) = P(y/n(0 — ) < t) is G(t) =
P.(vn(6* — ) < t). G™1(1 — @) can be estimated by G~1(1 — o). HB lower and upper confidence
limits: Oy =0 — G 1(1 — a)/v/n,0us = 0 — G~ (a)//n.

Definition 2 (Bootstrap-t): G(t) = P(v/n(0 — 0) < t) = ®(t/o). 6: a consistent estimator of o.
Then H(t) = P(v/n(0—0)/6 < t) — ®(t). A bootstrap estimator of H(t): H(t) = P,(v/n(6*—0)/6* <
t). BT lower and upper confidence limits: 0 =0 — 6 H (1 — ) //n, 0pr = 0+ 6H (1 — a)//n.

Definition 3 (Bootstrap percentile): Bootstrap distribution (histogram): K(t) = P.(0* < t) ~
L(# of times 6** < t). 100(1 — @)% BP lower confidence limit fpp = K~ () = inf{t : K(t) < a},
ie., Opp ~ aBth ordered valued of 6*!,--- #*B. 100(1 — )% BP upper confidence limit Ogp =
K~'(1—a)=inf{t : K(t) > 1 —a}, ie., Ogp ~ (1 — &) Bth ordered value of 6*!, ...  *B.

Assumption 1: There is a monotone transformation ¢ such that P(¢—¢ < t) = ¥(t) for all ¢ and
all P (including P = P,), where ¢ = ¢(f), ¢ = ¢(0) and ¥ is a continuous, increasing cdf symmetric
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about 0.
. If ¢ is known, then 0, = ¢~ (¢ + 24), 2o = U1 (a) is an exact 100(1 — )% lower
confidence bound, i.e., P(0y < ) =1 — a. Under assumption 1, Ozp = 0.
Assumption 2: There is a monotone transformation ¢ and a constant zy such that P(q@— P+29 <
t) = ¥(t) for all ¢t and all P (including P = P,), where ¥ is a continuous, increasing cdf symmetric
about 0 and z; is a constant that may depend on P and n.
0 = ¢ (¢ + za + 20) is an exact 100(1 — a)% lower confidence limit for §. Under
assumption 2, the bootstrap bias-corrected percentile Opc := K1 (U(z, + 220)) = K 1(¥(z, +
201 (K (D)) = 0
Assumption 3: There is a monotone transformation ¢ and constants zp and a (acceleration
constant) such that P( 0=0 | 2 < t) = U(t) for all ¢ and all P (including P = P,), where VU is a

14+a¢p
continuous, increasing cdf symmetric about 0.
205 =0 Yo+ %) is an exact 1 — —(1 — a)% lower confidence limit for 6.

) =

Under assumption 3, if @ is known, the BC, lower confidence bound 0, = K~ (¥(z+ a(eetz0)

0.
Definition 4 (Asymptotic accuarcy): A confidence set C is first order accurate if P(6 € C) =
1 — a+ O(n~'/?) and second order accurate if P(§ € C) =1 —a + O(n™1).

: For the case of § is a smooth function of sample means, we have shown the following
summary: (i) The BY and bootstrap BC, one-sided confidence intervals are second order accuratel.
(ii) The BP, BC, HB, and NA one-sided confidence intervals are in general first order accurate. (iii)
The equal-tail two-sided confidence intervals produced by all five bootstrap methods and the normal

approximation are second order accurate (errors cancel each other).

44



	1 Probability Theory
	1.1 Measure space, measurable function, and integration
	1.2 Integration theory and Radon-Nikodym derivative
	1.3 Densities, moments, inequalities, and generating functions
	1.4 Conditional expectation and independence
	1.5 Convergence modes and relationships
	1.6 Uniform integrability and weak convergence
	1.7 Convergence of transformations and law of large numbers
	1.8 The central limit theorem

	2 Fundamentals of Statistics
	2.1 Models, data, statistics, and sampling distributions
	2.2 Sufficiency and minimal sufficiency
	2.3 Completeness
	2.4 Statistical decision
	2.5 Statistical inference

	3 Unbiased Estimation
	3.1 UMVUE: functions of sufficient and complete statistics
	3.2 Characteristic of UMVUE and Fisher information bound
	3.3 U- and V-statistics
	3.4 Construction of unbiased or approximately unbiased estimators and method of moments

	4 Estimation in Parametric Models
	4.1 Bayesian approach
	4.2 Bayes rule and computation
	4.3 Minimaxity and admissibility
	4.4 Simultaneous estimation and shrinkage estimators
	4.5 Likelihood and maximum likelihood estimator (MLE)
	4.6 Asymptotically efficient estimation
	4.7 MLE in generalized linear models (GLM) and quasi-MLE
	4.8 Other asymptotically efficient estimators and pseudo MLE

	5  Estimation in Non-Parametric Models
	5.1 Empirical c.d.f. and empirical likelihoods
	5.2 Profile likelihoods, GEE, and GMM

	6 Hypothesis Tests
	6.1 Neyman-Pearson lemma and monotone likelihood ratio
	6.2 UMP tests and unbiased tests
	6.3 Likelihood ratio and asymptotic tests
	6.4 Asymptotic chi-square tests

	7 Confidence Sets
	7.1 Pivotal quantities and confidence sets
	7.2 Inverting acceptance regions of tests, UMA and UMAU confidence sets
	7.3 Lengths and expected lengths of confidence intervals
	7.4 Asymptotic confidence sets
	7.5 Variance estimation, replication, jackknife, and bootstrap
	7.6 Bootstrap confidence intervals


