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PROBABILITY THEORY

1 Probability Theory

1.1 Measure space, measurable function, and integration

Definition 1: A collection of subsets of Ω,F , is a σ-field (or σ-algebra) if (i) The empty set
∅ ∈ F ; (ii) If A ∈ F , then the complement Ac ∈ F ; (iii) If Ai ∈ F , i = 1, 2, · · · , then their union
∪Ai ∈ F . (Ω,F ) is a measurable space if F is a σ-field on Ω.

Example 1: C = a collection of subsets of interest. σ(C ) = the smallest σ-field containing C

(the σ-field generated by C ). σ(C ) = C if C itself is a σ-field. σ({A}) = {∅, A,Ac,Ω}.
Example 2 (Borel σ-field): Rk: the k-dimensional Euclidean space (R1 = R is the real line). O

= all open sets, C = all closed sets. Bk = σ(O) = σ(C ): the Borel σ-field on Rk. C ∈ Bk,BC =

{C ∩B : B ∈ Bk} is the Borel σ-field on C.
Definition 2: Let (Ω,F ) be a measurable space. A set function ν defined on F is a measure if

(i) 0 ≤ ν(A) ≤ ∞ for any A ∈ F ; (ii) ν(∅) = 0; (iii) If Ai ∈ F , i = 1, 2, · · · , and Ai’s are disjoint, i.e.
Ai ∩Aj = ∅ for any i ̸= j, then ν (∪∞

i=1Ai) =
∑∞

i=1 ν(Ai). (Ω,F , ν) is a measure if ν is a measure on
F in (Ω,F ).

Convention 1: For any x ∈ R, ∞ + x = ∞, x∞ = ∞ if x > 0, x∞ = −∞ if x < 0. 0∞ = 0,
∞+∞ = ∞, ∞a = ∞ for any a > 0. ∞−∞ or ∞/∞ is not defined.

Example 3 (Important examples of measures): (a) Let x ∈ Ω be a fixed point and δx(A) = c x ∈ A

0 x ̸∈ A
. This is called a point mass at x. (b) Let F = all subsets of Ω and ν(A) = the number

of elements in A ∈ F (ν(A) = ∞ if A contains infinitely many elements). Then ν is a measure on
F and is called the counting measure. (c) There is a unique measure m on (R,B), that satisfies
m([a, b]) = b−a for every finite interval [a, b], −∞ < a ≤ b <∞. This is called the Lebesgue measure.

Proposition 1 (Properties of measures): Let (Ω,F , ν) be a measure space. (1) Monotonicity:
If A ⊂ B, then ν(A) ⊂ ν(B). (2) Subadditivity: For any sequence A1, A2, · · · ,, ν (∪∞

i=1Ai) ≤∑∞
i=1 ν(Ai). (3) Continuity: If A1 ⊂ A2 ⊂ A3 ⊂ · · · (or A1 ⊃ A2 ⊃ A3 ⊃ · · · and ν(A1) < ∞), then

ν(limn→∞An) = limn→∞ ν(An) where limn→∞An = ∪∞
i=1Ai (or = ∩∞

i=1Ai).
Definition 3: Let P be a probability measure on (R,B). The cumulative distribution function

(c.d.f.) of P is defined to be F (x) = P ((−∞, x]), x ∈ R.
Proposition 2 (Properties of c.d.f.’s): (i) Let F be a c.d.f. on R. (a) F (−∞) = limx→−∞ F (x) = 0;

(b) F (∞) = limx→∞ F (x) = 1; (c) F is nondecreasing, i.e. F (x) ≤ F (y) if x ≤ y; (d) F is right
continuous, i.e. limy→x+0 F (y) = F (x). (ii) Suppose a real-valued function F on R satisfies (a)-(d)
in part (i). Then F is the c.d.f. of a unique probability meausre on (R,B).

Definition 4 (Product space): I = {1, · · · , k}, k is finite or ∞. Γi, i ∈ I , are some sets.∏
i∈I Γi = Γ1 × · · · ×Γk = {(a1, · · · , ak) : ai ∈ Γi, i ∈ I }. Let (Ωi,Fi), i ∈ I be measurable spaces.

σ(
∏
i∈I Fi) is called the product σ-field on the product space

∏
i∈I Ωi. (

∏
i∈I Ωi, σ(

∏
i∈I Fi)) is

denoted by
∏
i∈I (Ωi,Fi).

Definition 5 (σ-finite): A measure ν on (Ω,F ) is said to be σ-finite iff there exists a sequence
{A1, A2, · · · } such that ∪Ai = Ω and ν(Ai) <∞ for all i. Any finite measure is clearly σ-finite. The
Lebesgue measure on F is σ-finite.
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PROBABILITY THEORY

Proposition 3 (Product measure theorem): Let (Ωi,Fi, νi), i = 1, · · · , k, be measure spaces with
σ-finite measures. There exists a unique σ-finite measure on σ-field σ(F1 × · · · × Fk), called the
product measure and denoted by ν1×· · ·×νk, such that ν1×· · ·×νk(A1×· · ·×Ak) = ν1(A1) · · · νk(Ak)
for all Ai ∈ Fi, i = 1, · · · , k.

Definition 6 (Measurable function): Let (Ω,F ) and (Λ,G ) be measurable spaces. Let f be a
function from Ω to Λ. f is called a measurable function from (Ω,F ) to (Λ,G ) iff f−1(G ) ⊂ F .

Definition 7 (Integration): (a) The integral of a nonnegative simple function ϕ w.r.t.ν is defined
as

∫
ϕdν =

∑k
i=1 aiν(Ai). (b) Let f be a nonnegative Borel function and let Sf be the collection

of all nonnegative simple functions satisfying ϕ(ω) ≤ f(ω) for any ω ∈ Ω. The integral of f w.r.t.
ν is defined as

∫
fdν = sup{

∫
ϕdν : ϕ ∈ Sf} (Hence, for any Borel function f ≥ 0, there exists

aa sequence of simple functions ϕ1, ϕ2, · · · such that 0 ≤ ϕi ≤ f for all i and limn→∞
∫
ϕndν =∫

fdν). (c) Let f be a Borel function, f+(ω) = max{f(ω), 0} be the positive part of f , and f−(ω) =
max{−f(ω), 0} be the negative part of f . We say that

∫
fdν exists if and only if at least one of∫

f+dν and
∫
f−dν is finite, in which case

∫
fdν =

∫
f+dν −

∫
f−dν. (d) When both

∫
f+dν and∫

f−dν are finite, we say that f is integrable. Let A be a measurable set and IA be its indicator
function. The integral of f over A is defined as

∫
A
fdν =

∫
IAfdν.

Example 4 (Extended set): For convenience, we define the integral of a measurable f from
(Ω,F , ν) to (R̄, B̄), where R̄ = R ∪ {−∞,+∞}, B̄ = σ(B ∪ {∞,−∞}). Let A+ = {f = ∞} and
A− = {f = −∞}. If ν(A+) = 0, we define

∫
f+dν to be

∫
IAc

+
f+dν; otherwise

∫
f+dν = ∞.

∫
f−dν

is similarly defined. If at least one of
∫
f+dν and

∫
f−dν is finite, then

∫
fdν =

∫
f+dν −

∫
f−dν is

well defined.

1.2 Integration theory and Radon-Nikodym derivative

Proposition 1: (Ω,F , ν) be a measure space and f and g be Borel functions. (i) If f ≤ g a.e.,
then

∫
fdν ≤

∫
gdν, provided that the itegrals exist. (ii) If f ≥ 0 a.e. and

∫
fdν = 0, then f = 0 a.e.

Theorem 1: Let f1, f2, · be a sequence of Borel functions on (Ω,F , ν). (i) Fatou’s lemma: If fn ≥
0, then

∫
lim infn fndν ≤ lim infn

∫
fndν. (ii) Dominated convergence theorem: If limn→∞ fn = f a.e.

and |fn| ≤ g a.e. for integrable g, then
∫

limn→∞ fndν = limn→∞
∫
fndν. (iii) Monotone convergence

theorem: If 0 ≤ f1 ≤ f2 ≤ · · · and limn→∞ fn = f a.e., then
∫

limn→∞ fndν = limn→∞
∫
fndν.

Example 1 (Interchange of differentiation and integration): Let (Ω,F , ν) be a measure space
and, for any fixed θ ∈ R, let f(ω, θ) be a Borel function on Ω. Suppose that ∂f(ω, θ)/∂θ exists a.e.
for θ ∈ (a, b) ⊂ R and that |∂f(ω, θ)/∂θ| ≤ g(ω) a.e., where g is an integrable function on Ω. Then
for each θ ∈ (a, b), ∂f(ω, θ)/∂θ is integrable and, by Theorem 1(ii), d

dθ

∫
f(ω, θ)dν =

∫ ∂f(ω,θ)
∂θ

dν.
Theorem 2 (Change of variables): Let f be measurable from (Ω,F , ν) to (Λ,G ) and g be Borel

on (Λ,G ). Then
∫
Ω
g ◦ fdν =

∫
Λ
gd(ν ◦ f−1), i.e., if either integral exists, then so does the other, and

the two are the same.
Theorem 3 (Fubini’s theorem): Let νi be a σ-finite measure on (Ωi,Fi), i = 1, 2, and f be a Borel

function on
∏2
i=1(Ωi,Fi) with f ≥ 0 or

∫
|f |dν1 × ν2 <∞. Then g(ω2) =

∫
Ω1
f(ω1, ω2)dν1 exists a.e.

ν2 and defines a Borel function on Ω2 whose integral w.r.t. ν2 exists, and
∫
Ω×Ω

f(ω1, ω2)dν1 × ν2 =∫
Ω2
[
∫
Ω1
f(ω1, ω2)dν1]dν2.
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PROBABILITY THEORY

Definition 1 (Absolutely continuous): Let λ and ν be two measures on a measurable space
(Ω,F , ν). We say λ is absolutely continuous w.r.t. ν and write λ << ν iff ν(A) = 0 implies
λ(A) = 0.

Theorem 4 (Radon-Nikodym theorem): Let ν and λ be two measure on (Ω,F ) and ν be σ-finite.
If λ << ν, then there exists a nonnegative Borel function f on Ω such that λ(A) =

∫
A
fdν,A ∈ F .

Furthermore, f is unique a.e. ν, i.e. if λ(A) =
∫
A
gdν for any A ∈ F , then f = g a.e. ν.

Example 2: A continuous c.d.f. may not have a p.d.f. w.r.t. Lebesgue measure. A necessary
and sufficient condition for a c.d.f. F having a p.d.f. w.r.t. Lebesgue measure is that F is absolute
continuous in the sense that for any ϵ > 0, there exists a δ > 0 such that for each finite collection of
disjoint bounded open intervals (ai, bi),

∑
(bi − ai) < δ implies

∑
[F (bi)− F (ai)] < ϵ.

Proposition 2 (Calculus with Radon-Nikodym derivatives): Let ν be a σ-finite measure on a
measure space (Ω,F ). (i) If λ is a measure, λ << ν, and f ≥ 0, then

∫
fdλ =

∫
f dλ
dν
dν. (ii) If

λi, i = 1, 2, are measures and λi << ν, then λ1 + λ2 << ν and d(λ1+λ2)
dν

= dλ1

dν
+ dλ2

dν
a.e. ν. (iii) If

τ is a measure, λ is a σ-finite measure, and τ << λ << ν, then dτ
dν

= dτ
dλ

dλ
dν

a.e. ν. In particular, if
λ << ν and ν << λ (in which case λ and ν are equivalent), then dλ

dν
= ( dν

dλ
)−1 a.e. ν or λ. (iv) Let

(Ωi,Fi, νi) be a measure space and νi be σ-finite, i = 1, 2. Let λi be a σ-finite measure on (Ω,Fi)

and λi << νi, i = 1, 2. Then λ1 × λ2 << ν1 × ν2 and d(λ1×λ2)
d(ν1×ν2) (ω1, ω2) =

dλ1

dν1
(ω1)

dλ2

dν2
(ω2) a.e. ν1 × ν2.

1.3 Densities, moments, inequalities, and generating functions

Example 1: Let X be a random variable on (Ω,F , P ) whose c.d.f. FX has a Lebesgue p.d.f. fx
and Fx(c) < 1, where c is a fixed constant. Let Y = min{X, c}. Note that Y −1((−∞, X]) = Ω if
x ≥ c and Y −1((−∞, x]) = X−1((−∞, x]) if x < c. Hence Y is a random variable and the c.d.f. of

Y is FY (x) =

 1 x ≥ c

FX(x) x < c
. This c.d.f. is discontinuous at c, since Fx(c) < 1. Thus, it does

not have a Lebesgue p.d.f. It is not discrete either. Does PY , the probability measure corresponding
to Fy, have a p.d.f. w.r.t. some measure? Consider the point mass probability measure on (R,B) :

δc(A) =

 1 c ∈ A

0 c ̸∈ A
,A ∈ B. Then PY << m + δc, and the p.d.f. of PY is fY (x) = dPY

d(m+δc)
(x) =

0 x > c

1− FX(c) x = c

fX(x) x < c

. To show this, it suffices to show that
∫
(−∞,x]

fY (t)d(m+ δc) = PY ((−∞, x])

for any x ∈ B.
Proposition 1 (Transformation): Let X be a random k-vector with a Lebesgue p.d.f. fX and

let Y = g(X), where g is a Borel function from (Rk,Bk) to (Rk,Bl). Let A1, · · · , Am be disjoint
sets in Bk such that Rk − (A1 ∪ · · · ∪ Am) has Lebesgue measure 0 and g on Aj is one-to-one with
a nonvanishing Jacobian, i.e., the determinant Det(∂g(x)/∂x) ̸= 0 on Aj , j = 1, · · · ,m. Then Y

has the following Lebesgue p.d.f.: fY (x) =
∑m

j=1 |Det(∂hj(x)/∂x)|fX(hj(x)), where hj is the inverse
function of g on Aj , j = 1, · · · ,m.

Example 2 (F-distribution): Let X1 and X2 be independent random variables having the chi-
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PROBABILITY THEORY

square distributions χ2
n1

and χ2
n2

, respectively. One can show that the p.d.f. of Y = (X1/n1)/(X2/n2)

is the p.d.f. of the F-distribution Fn1,n2
.

Example 3 (t-distribution): Let U1 be a random variable having the standard normal distribution
N(0, 1) and U2 a random variable having the chi-square distribution χ2

n. One can show that if U1

and U2 are independent, then the distribution of T = U1/
√
U2/n is the t-distribution tn.

Example 4 (Noncentral chi-square distribution): Let X1, · · · , Xn be independent random vari-
ables and Xi ∼ N(µi, σ

2). The distribution of Y = (X2
1 + · · · + X2

n)/σ
2 is called the noncentral

chi-square distribution and denoted by χ2
n(δ), where δ = (µ2

1 + · · · + µ2
n)/σ

2 is the noncentrality
parameter. If Y1, · · · , Yk are independent random variables aand Yi has the noncentral independent
chi-square distribution χ2

ni
(δi), i = 1, · · · , k, then Y = Y1 + · · · + Yk has the noncentral chi-square

distribution χ2
n1+···+nk

(δ1 + · · ·+ δk).
Definition 1 (Moments): If EXk is finite, where k is a positive integer, EXk is called the k-th

moment ofX or Px. If E|X|a <∞ for some real number a, E|X|a is called the a-th absolute moment of
X or PX . If µ = EX, E(X−µ)k is called the k-th central moment of X or PX . Var(X) = E(X−EX)2

is called the variance of X or PX . For random matrix M = (Mij), EM = (EMij). For random vector
X, Var(X) = E(X −EX)(X −EX)T is its covariance matrix, whose (i, j)-th element, i ̸= j, is called
the covariance of Xi and Xj and denoted by Cov(Xi, Xj). If Cov(Xi, Xj) = 0, then Xi and Xj aare
said to be uncorrelated. Independence implies uncorelation, not converse. If X is random and c is
fixed, then E(cTX) = cTE(X) and Var(cTX) = cTVar(X)c.

Definition 2 (Moment generating and characteristic functions): Let X be a random k-vector.
(i) The moment generating function (m.g.f.) of X or PX is defined as ψX(t) = EetTX , t ∈ Rk.
(ii) The characteristic function (ch.f.) of X or PX is defined as ϕX(t) = EeitTX = E[cos(tTX)] +

iE[sin(tTX)], t ∈ Rk.
Proposition 2 (Properties of m.g.f. and ch.f.): If the m.g.f. is finite in a neighborhood of

0 ∈ Rk, then (i) moments of X of any order are finite; (ii) ϕX(t) can be obtained by replacing
t in ψX(t) by it. If Y = ATX + c, where A is a k × m matrix and c ∈ Rm, then ψY (u) =

ec
TuψX(Au) and ϕY (u) = eic

TuϕX(Au), u ∈ Rm. For independent X1, · · · , Xk, ψ∑
iXi

(t) =
∏
i ψXi

(t)

and ϕ∑
iXk

(t) =
∏
i ϕXi

(t), t ∈ Rk. For X = (X1, · · · , Xk) with m.g.f. ψX finite in a neighborhood of
0, ∂ψX(t)

∂t
|t=0 = EX, ∂

2ψX(t)
∂t∂tT

|t=0 = E(XXT ). If E|Xr1
1 · · ·Xrk

k | <∞ for nonnegative integers r1, · · · , rk,
then ∂ϕX(t)

∂t
|t=0 = iEX, ∂

2ϕX(t)
∂t∂tT

|t=0 = −E(XXT ).
Theorem 1 (Uniqueness): Let X and Y be random k-vectors. (i) If ϕX(t) = ϕY (t) for all t ∈ Rk,

then PX = PY ; (2) If ψX(t) = ψY (t) <∞ for all t in a neighborhood of 0, then PX = PY .

1.4 Conditional expectation and independence

Definition 1: Let X be an integrable random variable on (Ω,F , P ). (i) The conditional expec-
tation of X given A (a sub-σ-field of F ), denoted by E(X|A ), is the a.s. unique random variable
satisfying the following two conditions: (a) E(X|A ) is a measurable from (Ω,A ) to (R,B); (b)∫
A
E(X|A )dP =

∫
A
XdP for any A ∈ A . (ii) The conditional probability of B ∈ F given A

is defined to be P (B|A ) = E(IB|A ). (iii) Let Y be measurable from (Ω,F , P ) to (Λ,G ). The
conditionala expectation of X given Y is defined to be E(X|Y ) = E[X|σ(Y )].
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PROBABILITY THEORY

Theorem 1: Let Y be measurable from (Ω,F ) to (Λ,G ) and Z a function from (Ω,F ) to Rk.
Then Z is measurable from (Ω, σ(Y )) to (Rk,Bk) iff there is a measurable function h from (Λ,G )

such that Z = h ◦ Y .
Example 1: Let X be an integrable random variable on (Ω,F , P ), A1, A2, · · · be disjoint events

on (Ω,F , P ) such that ∪Ai = Ω and P (Ai) > 0 for all i, and let a1, a2, · · · be distinct real numbers.
Define Y = a1IA1

+ a2IA2
+ · · · . We can show that E(X|Y ) =

∑∞
i=1

∫
Ai
XdP

P (Ai)
IAi

.
Proposition 1: Let X be a random n-vector and Y a random m-vector. Suppose that (X,Y )

has a joint p.d.f. f(x, y) w.r.t. ν × λ, where ν and λ are σ-finite measures on (Rn,Bn) and
(Rm,Bm), respectively. Let g(x, y) be a Borel function on Rn+m for which E|g(X,Y )| < ∞. Then
E[g(X,Y )|Y ] =

∫
g(x,Y )f(x,Y )dν(x)∫

f(x,Y )dν(x)
a.s.

Definition 2 (Conditional p.d.f.): Let (X,Y ) be a random vector with a joint p.d.f. f(x, y)

w.r.t. ν × λ. The conditional p.d.f. of X given Y = y is defined to be fX|Y (x|y)/fY (y) where
fY (y) =

∫
f(x, y)dν(x) is the marginl p.d.f. of Y w.r.t. λ.

Proposition 2: Let X,Y,X1, X2, · · · be integrable random variables on (Ω,F , P ) and A be
a sub-σ-field of F . (i) If X = c a.s., c ∈ R, then E(X|A ) = c a.s. (ii) If X ≤ Y a.s., then
E(X|A ) ≤ E(Y |A ) a.s. (iii) If a, b ∈ R, then E(aX + bY |A ) = aE(X|A ) + bE(Y |A ) a.s. (iv)
E[E(X|A )] = EX. (v) E[E(X|A )|A0] = E(X|A0) = E[E(X|A0)|A ] a.s., where A0 is a sub-σ-field
of A . (vi) If σ(Y ) ⊂ A and E|XY | < ∞, then E(XY |A ) = Y E(X|A ) a.s. (vii) If X and Y are
independent and E|g(X,Y )| <∞ for a Borel function g, then E[g(X,Y )|Y = y] = E[g(X, y)] a.s. PY .
(viii) If EX2 < ∞, then [E(X|A )]2 ≤ E(X2|A ) a.s. (ix) Fatou’s lemma: If Xn ≥ 0 for any n, then
E(lim infnXn|A ) ≤ lim infn E(Xn|A ) a.s. (x) Dominated convergence theorem: If |Xn| ≤ Y for any
n and Xn →a.s. X, then E(Xn|A ) →a.s. E(X|A ).

Definition 3 (Independence): Let (Ω,F , P ) be a probability space. (i) Let C be a collection of
subsets in F . Events in C are said to be independent iff for any positive integer n and distinct events
A1, · · · , An ∈ C , P (A1 ∩A2 ∩ · · · ∩An) = P (A1)P (A2) · · ·P (An). (ii) Collections Ci ⊂ F , i ∈ I are
said to be independent iff events in any collection of the form {Ai ∈ Ci : i ∈ I } are independent.
(iii) Random elements Xi, i ∈ I , are said to be independent iff σ(Xi), i ∈ I are independent.

Theorem 2: Let Ci, i ∈ I be independent collections of events. If each Ci is a π-system, then
σ(Ci), i ∈ I are independent.

Proposition 2: Let X be a random variable with E|X| < ∞ and let Yi be random ki vectors,
i = 1, 2. Suppose that (X,Y1) and Y2 are independent. Then E[X|(Y1, Y2)] = E(X|Y1) a.s.

Definition 4 (Conditional independence): Let X,Y, Z be random vectors. We say that given Z,
X and Y are conditionally independent iff P (A|X,Z) = P (A|Z) a.s. for any A ∈ σ(Y ).

1.5 Convergence modes and relationships

Definition 1 (Convergence modes): Let X,X1, X2, · · · be a random k-vectors defined on a prob-
ability space. (i) We say that the sequence {Xn} converges to X almost surely and write Xn →a.s. X

iff limn→∞Xn = X a.s. (ii) We say that {Xn} converges to X in probability and write Xn →p X

iff for every fixed ϵ > 0, limn→∞ P (||Xn − X|| > ϵ) = 0. (iii) We say that {Xn} converges to X in
Lr (or in rth moment) with a fixed r > 0 and write Xn →Lr

X iff limn→∞ E||Xn − X||rr = 0. (iv)

7
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Let F, Fn, n = 1, 2, · · · be c.d.f.’s on Rk and P, Pn, n = 1, 2, · · · be their corresponding probability
measures. We say that {Fn} converges to F weakly (or {Pn} converges to P weakly) and write
Fn →w F (or Pn →w P ) iff, for each continuity point x of F , limn→∞ Fn(x) = F (x). We say that
{Xn} converges to X in distribution (or in law) and write Xn →d X iff FXn

→w FX .
Proposition 1: If Fn →w F and F is continuous on Rk, then limn→∞ supx∈Rk |Fn(x)−F (x)| = 0.
Theorem 1: For random k-vectors X,X1, X2, · · · on a probability space, Xn →a.s. X iff for every

ϵ > 0, limn→∞ P (∪∞
m=n{||Xm −X|| > ϵ}) = 0.

Theorem 2 (Borel-Cantelli lemma): Let An be a sequence of events in a probability space and
lim supnAn = ∩∞

n=1 ∪∞
m=n Am. (i) If

∑∞
n=1 P (An) <∞, then P (lim infnAn) = 0. (ii) If A1, A2, · · · re

pairwise independent aaand
∑∞

n=1 P (An) = ∞, then P (lim supnAn) = 1.
Definition 2: Let X1, X2, · · · be random vectors and Y1, Y2, · · · be random variables defined on

a common probability space. (i) Xn = O(Yn) a.s. iff P (||Xn|| = O(|Yn|)) = 1. (ii) Xn = o(Yn)

a.s. iff Xn/Yn →a.s. 0. (iii) Xn = Op(Yn) iff, for any ϵ > 0, there is a constant Cϵ > 0 such that
supn P (||Xn|| ≥ Cϵ|Yn|) < ϵ. (iv) Xn = op(Yn) iff Xn/Yn →p 0.

Theorem 3: (i) If Xn →a.s. X, then Xn →p X. (The converse is not true). (ii) If Xn →Lr
X

for an r > 0, then Xn →p X. (The converse is not true). (iii) If Xn →p X, then Xn →d X.
(The converse is not true). (iv) (Skorohod’s theorem). If Xn →d X, then there are random vectors
Y, Y1, Y2, · · · defined on a common probability space such that PY = PX , PYn

= PXn
, n = 1, 2, · · ·

and Yn →a.s. Y . (v) If, for every ϵ > 0,
∑∞

n=1 P (||Xn − X|| ≥ ϵ) < ∞, then Xn →a.s. X. (vi) If
Xn →p X, then there is a subsequence such that Xnj

→a.s. X as j → ∞. (vii) If Xn →d X and
P (X = c) = 1, where c ∈ Rk is a constant vector, then Xn →p c. (viii) Suppose that Xn →d X.
Then for any r > 0, limn→∞ E||Xn||rr = E||X||rr < ∞ if {||Xn||rr} is uniformly integrable in the sense
that limt→∞ supn E(||Xn||rrI{||Xn||r>t}) = 0.

Proposition 2 (Sufficient conditions for uniform integrability): supn E||Xn||r+δr <∞ for a δ > 0.
Proposition 3 (Properties of the quotient random variables): (i) Suppose X,X1, X2, · · · are

positive random variables. Then Xn →a.s. X iff for every ϵ > 0, limn→∞ P (supk≥n Xk

X
> 1 + ϵ) = 0,

and limn→∞ P (supk≥n X
Xk

> 1 + ϵ) = 0. (ii) Suppose X,X1, X2, · · · are positive random variables. If∑∞
n=1 P (Xn/X > 1 + ϵ) <∞ and

∑∞
n=1 P (X/Xn > 1 + ϵ) <∞, then Xn →a.s. X.

1.6 Uniform integrability and weak convergence

Definition 1 (Tightness): A sequence {Pn} of probability measure on (Rk,Bk) is tight if for every
ϵ > 0, there is a compact set C ⊂ Rk such that infn Pn(C) > 1− ϵ. If {Xn} is a sequence of random
k-vectors, then the tightness of {PXn

} is the same as the boundedness of {||Xn||} in probability.
Proposition 1: Let {Pn} be a sequence of probability measures on (Rk,Bk). (i) Tightness of

{Pn} is a necessary and sufficient condition that for every subsequence {Pn} there exists a further
subsequence {Pnj

} ⊂ {Pn} and a probability measure P on (Rk,Bk) such that Pnj
→w P as j → ∞.

(ii) If {Pn} is tight and if each subsequence that converges weakly at all converges to the same
probability measure P , then Pn →w P .

Theorem 1 (Useful sufficient and necessary conditions for convergence in distribution): Let
X,X1, X2, · · · be random k-vectors. (i) Xn →d X is equivalent to any one of the following conditions:
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(a) E[h(Xn)] → E[h(X)] for every bounded continuous function h; (b) lim supn PXn
(C) ≤ PX(C) for

any closed set C ⊂ Rk; (c) lim infn PXn
(O) ≥ PX(O) for any open set O ⊂ Rk. (ii) Lévy-Cramér

continuity theorem. Let ϕX , ϕX1
, ϕX2

be the ch.f.’s of X,X1, X2, · · · , respectively. Xn →d X iff
limn→∞ ϕXn

(t) = ϕX(t) for all t ∈ Rk. (iii) Cramér-Wold device. Xn →d X iff cTXn →d c
TX for

every c ∈ Rk.
Example 1: Let X1, · · · , Xn be independent random variables having a common c.d.f. and

Tn = X1 + · · ·+Xn, n = 1, 2, · · · . Suppose that E|X1| <∞. It follows from a result in calculus that
the ch.f. of X1 satisfies ϕX1

(t) = ϕX1
(0)+

√
−1µt+ o(|t|) as |t| → 0, where µ = EX1. Then, the ch.f.

of Tn/n is ϕTn/n(t) = [ϕX1
( t
n
)]n = [1 +

√
−1µt
n

+ o( t
n
)]n → e

√
−1µt for any t ∈ R as n → ∞. e

√
−1µt is

the ch.f. of the point mass probability measure at µ. Thus Tn/n→d µ and Tn/n→p µ.
Proposition 2 (Scheffé’s theorem): Let {fn} be a sequence of p.d.f.’s on Rk w.r.t. ν. Suppose

that limn→∞ fn(x) = f(x) a.e. and f(x) is a p.d.f. w.r.t. ν. Then limn→∞
∫
|fn(x)− f(x)|dν = 0.

1.7 Convergence of transformations and law of large numbers

Theorem 1 (Continuous mapping theorem): Let X,X1, X2, · · · be random k-vectors defined on a
probability space and g be a measure function from (Rk,Bk) to (Rl,Bl). Suppose that g is continuous
a.s. PX . Then (i) Xn →a.s. X implies g(Xn) →a.s. g(X); (ii) Xn →p X implies g(Xn) →p g(X); (iii)
Xn →d X implies g(Xn) →d g(X).

Theorem 2 (Slutsky’s theorem): Let X,X1, X2, · · · , Y1, Y2, · · · be random variables on a proba-
bility space. Suppose that Xn →d X and Yn →p c, where c is a constant, where c is a constant. Then
(i) Xn + Yn →d X + c; (ii) YnXn →d cX; (iii) Xn/Yn →d X/c if c ̸= 0.

Theorem 3: Let X1, X2, · · · and Y = (Y1, · · · , Yk) be random k-vectors satisfying an(Xn− c) →d

Y , where c ∈ Rk and {an} is a sequence of positive numbers with limn→∞ an = ∞. Let g be a
function from Rk → R. (i) If g is differentiable at c, then an[g(Xn) − g(c)] →d [∇g(c)T ]Y , where
∇g(x) denotes the k-vector of partial derivatives of g at x. (ii) Suppose that g has continuous
partial derivatives of order m > 1 in a neighborhood of c, with all the partial derivatives of order
j, 1 ≤ j ≤ m − 1, vanishing at c, but with the mth-order partial derivatives not all vanishing at c.
Then amn [g(Xn)− g(c)] →d

1
m!

∑k
i1=1 · · ·

∑k
im=1

∂mg
∂xi1

···∂xim
|x=cYi1 · · ·Yim .

Theorem 4 (The δ-method): If Y has the Nk(0,Σ) distribution, then an[g(Xn) − g(c)] →d

N (0, [∇g(c)]TΣ∇g(c)).
Theorem 5: Let X1, X2, · · · be i.i.d. random variables. (i) The WLLN. A necessary and sufficient

condition for the existence of a sequence of real numbers {an} for which 1
n

∑n
i=1Xi− an →p 0 is that

nP (|X1| > n) → 0, in which case we may take an = E(X11{|X1|≤n}). (ii) The SLLN. A necessary and
sufficient condition for the existence of a constant c for which 1

n

∑n
i=1Xi →a.s. c is that E|X1| < ∞,

in which case c = EX1 and 1
n

∑n
i=1 ci(Xi − EX1) →a.s. 0 for any bounded sequence of real numbers

{ci}.
Theorem 6: Let X1, X2, · · · be independent random variables with finite expectations. (i) The

SLLN. If there is a constant p ∈ [1, 2] such that
∑∞

i=1
E|Xi|p
ip

< ∞, then 1
n

∑n
i=1(Xi − EXi) →a.s.

0. (ii) The WLLN. If there is a constant p ∈ [1, 2] such that limn→∞
1
np

∑n
i=1 E|Xi|p = 0, then

1
n

∑n
i=1(Xi − EXi) →p 0.
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1.8 The central limit theorem

Theorem 1 (Lindeberg’s CLT): Let {Xnj , j = 1, · · · , kn} be independent random variables with
kn → ∞ as n → ∞ and 0 < σ2

n = var(
∑kn

j=1Xnj) < ∞, n = 1, 2, · · · . If 1
σ2
n

∑kn
j=1 E[(Xnj −

EXnj)
2I{|Xnj−EXnj |>ϵσn}] → 0 for any ϵ > 0, then 1

σn

∑kn
j=1(Xnj − EXnj) →d N (0, 1).

Theorem 2 (Multivariate CLT): For i.i.d. random k-vectors X1, · · · , Xn with a finite Σ =

var(X1), 1√
n

∑n
i=1(Xi − EX1) →d Nk(0,Σ).

Theorem 3 (Berry-Esséen bound): For i.i.d. {Xn} and Wn =
√
n(X̄−µ)/σ, supt |FWn

(t)−ϕ(t)| ≤
33
4

E|X1−µ|3
σ3

√
n
, n = 1, 2, · · · . Thus, the convergence speed of FWn

to ϕ is of the order n−1/2.

2 Fundamentals of Statistics

2.1 Models, data, statistics, and sampling distributions

Definition 1: A set of probability measures Pθ on (Ω,F ) indexed by a parameter θ ∈ Θ is said
to be a parametric family or follow a parametric model iff Θ ⊂ Rd for some fixed positive integer
d and each Pθ is a known probability measure when θ is known. The set Θ is called the parameter
space and d is called its dimension. P = {Pθ : θ ∈ Θ} is identifiable iff θ1 ̸= θ2 and θi ∈ Θ imply
Pθ1 ̸= Pθ2 , which may be achieved through reparameterization.

Definition 2 (Dominated family): A family of populations P is dominated by ν (a σ-finite
measure) if P << ν for all P ∈ P , in which case P can be identified by the family of densities
{dP
dν

: P ∈ P} or {dPθ

dν
: θ ∈ Θ}.

Definition 3 (Exponential families): A parametric family {Pθ : θ :∈ Θ} dominated by a σ-finite
measure ν on (Ω,F ) is called on an exponential family iff dPθ

dν
(ω) = exp{[η(θ)]TT (ω)−ξ(θ)}h(ω), ω ∈

Ω where ξ(θ) = log{
∫
ω

exp{[η(θ)]TT (ω)}h(ω)dν(ω)}. In an exponential family, consider the param-
eter η = η(θ) and fη(ω) = exp{ηTT (ω)− ζ(η)}h(ω), ω ∈ Ω. This is called the canonical form for the
family, and Ξ = {η : ζ(η) is defined} is called the natural parameter space. An exponential family
in canonical form is a natural exponential family. If there is an open set contained in the natural
parameter space of an exponential family, then the family is said to be of full rank.

Theorem 1: Let P be a natural exponential family. (i) Let T = (Y, U) and η = (θ, ϕ), Y and θ

have the same dimension. Then, Y has the p.d.f. fη(y) = exp{θT y − ζ(η)}. In particular, T has a
p.d.f. in a natural exponential family. Furthermore, the conditional distribution of Y given U = u

has the p.d.f. fθ,u(y) = exp{θT y− ζu(θ)} w.r.t. a σ-finite measure depending on ϕ. Furthermore, the
conditional distribution of Y given U = u has the p.d.f. fθ,u(y) = exp(θT y − ζu(θ)) w.r.t. a σ-finite
measure depending on u. (ii) If η0 is an interior point of the natural parameter space, then the m.g.f.
of Pη0 ◦ T−1 is finite in a neighbbrhood of 0 and is given by ψη0(t) = exp{ζ(η0 + t)− ζ(η0)}.

Definition 4 (Location-scale families): Let P be a known probability measure on (Rk,Bk),V ⊂
Rk, and Mk be a collection of k × k symmetric positive definite matrices. The family {P(µ,Σ) : µ ∈
V ,Σ ∈ Mk} is called a location-scale family (on Rk), where P(µ,Σ)(B) = P (Σ−1/2(B − µ)), B ∈ Bk.
The parameters µ and Σ1/2 are called the location and scale parameters, respectively.

Definition 5 (Statistics and their sampling distributions): Our data set is a realization of a sample

10
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(random vector) X from an unknown population P . Statistic T (X): A measurable function T of X;
T (X) is a known value whenever X is known. A nontrivial statistic T (X) is usually simpler than X.
Finding the form of the distribution of T is one of the major problems in statistical inference and
decision theory.

Example 1: Let X1, · · · , Xn be i.i.d. random variables having a common distribution P . The
sample mean and sample variance X̄ = 1

n

∑n
i=1Xi, S

2 = 1
n−1

∑n
i=1(Xi− X̄)2 are two commonly used

statistics.
Example 2 (Order statistics): Let X = (X1, · · · , Xn) with i.i.d. random components. Let X(i)

be the ith smallest value of X1, · · · , Xn. The statistics X(1), · · · , X(n) are called the order statistics.

2.2 Sufficiency and minimal sufficiency

Definition 1 (Sufficiency): Let X be a sample from an unknown population P ∈ P , where P is
a family of populations. A statistic T (X) is said to be sufficient for P ∈ P iff conditional distribution
of X given T is known.

Theorem 1 (The factorization theorem): Suppose that X is a sample from P ∈ P and P is
a family of probability measures on (Rn,Bn) dominated by a σ-finite measure ν. Then T (X) is
sufficient for P ∈ P iff there are nonnegative Borel functions h and gp on the range of T such that
dP
dν

(x) = gp(T (x))h(x).
Theorem 2: If a family P is dominated by a σ-finite measure, then P is dominated by a

probability measure Q =
∑∞

i=1 ciPi, where ci’s are nonnegative constants with
∑∞

i=1 ci = 1 and
Pi ∈ P .

Convention 1: If a statement holds except for outcomes in an event A satisfying P (A) = 0 for
all P ∈ P , then we say that the statement holds a.s. P .

Definition 2 (Minimal sufficiency): Let T be a sufficient statistic for P ∈ P . T is called a
minimal sufficient statistic iff, for any other statistic S sufficient for P ∈ P , there is a measurable
function ψ such that T = ψ(S) a.s. P .

Theorem 3 (Existence and uniqueness): Minimal sufficient statistics exist when P contains
distributions on Rk dominated by a σ-finite measure. If both T and S are minimal sufficient statistics,
then by definition there is one-to-one measurable function ψ such that T = ψ(S) a.s. P .

Theorem 4: Let P be a family of distributions on Rk. (i) Suppose that P0 ⊂ P and a.s.
P0 implies a.s. P . If T is sufficient for P ∈ P and minimal sufficient for P ∈ P0, then T is
minimal sufficient for P ∈ P . (ii) Suppose that P contains p.d.f.’s f0, f1, f2, · · · w.r.t. a σ-finite
ν. Let f∞(x) =

∑∞
i=0 cifi(x), where ci > 0 for all i and

∑∞
i=0 ci = 1, and let Ti(x) = fi(x)/f∞(x)

when f∞(x) > 0, i = 0, 1, 2, · · · . Then T (x) = (T0, T1, T2, · · · ) is minimal sufficient for P ∈ P .
Furthermore, if {x : fi(x) > 0} ⊂ {x : f0(x) > 0} for all i, then we may replace f∞(x) for f0(x), in
which case T (x) = (T1, T2, · · · ) is minimal sufficient for P ∈ P . (iii) Suppose that P contains p.d.f.’s
fp w.r.t. a σ-finite measure and that there exists a sufficient statistic T (x) such that, for any possible
values x and y of X, fp(x) = fp(y)ϕ(x, y) for all P implies T (x) = T (y), where ϕ is a measurable
function. Then T (x) is minimal sufficient for P ∈ P .
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2.3 Completeness

Definition 1 (Ancillary statistics): A statistic V (x) is ancillary iff its distribution does not depend
on any unknown quantity. A statistic V (X) is first-order ancillary iff E[V (X)] does not depend on
any unknown quantity.

Remark 1: If V (x) is a non-trivial ancillary statistic, then σ(V ) does not contain any information
about the unknown population P . If T (x) is a statistic and V (T (x)) is a non-trivial ancillary statistic,
it indicates that the reduced data set by T contains a non-trivial part that does not contain any
information about θ and, hence, a further simplification of T may still be needed.

Definition 2 (Completeness): A statistic T (x) is complete (or boundedly complete) for P ∈ P

iff, for any Borel f (or bounded Borel f), E[f(T )] = 0 for all P ∈ P implies f = 0 a.s. P .
Remark 2: If T is complete (or boundedly complete) and S = ψ(T ) for a measurable ψ, then S is

complete (or boundedly complete). A complete and sufficient statistic should be minimal sufficient.
But a minimal sufficient statistic may be not complete.

Proposition 1: If P is in an exponential family of full rank with p.d.f.’s given by fη(x) =

exp{ηTT (x)− ζ(η)}h(x), then T (x) is complete and sufficient for η ∈ Ξ.
Example 1: Suppose that X1, · · · , Xn are i.i.d. random variables having the N (µ, σ2) distribu-

tion, µ ∈ R, σ > 0. The joint p.d.f. of X1, · · · , Xn is (2π)−n/2 exp{η1T1 + η2T2 − nζ(η)}, where
T1 =

∑n
i=1Xi, T2 = −

∑n
i=1X

2
i and η = (η1, η2) = ( µ

σ2 ,
1

2σ2 ). Hence, the family of distributions for
X = (X1, · · · , Xn) is a natural exponential family of full rank (Ξ = R×(0,∞)). Thus T (X) = (T1, T2)

is complete and sufficient for η.
Example 2: T (x) = (X(1), · · · , X(n)) of i.i.d. random variables X1, · · · , Xn is sufficient for

P ∈ P , where P is the family of distributions on R having Lebesgue p.d.f.’s. We can show that
T (x) is also complete for P ∈ P .

Theorem 1 (Basu’s theorem): Let V and T be two statistics of X from a population P ∈ P . If
V is ancillary and T is boundedly complete and sufficient for P ∈ P , then V and T are independent
w.r.t. any P ∈ P .

Example 3: X1, · · · , Xn is a random sample from uniform(θ, θ+ 1), θ ∈ R, and T = (X(1), X(n))

is the minimal sufficient statistic for θ. We can show that T is not complete.
Theorem 2: Suppose that S is a minimal sufficient statistic and T is a complete and sufficient

statistic. Then T must be minimal sufficient and S must be complete.

2.4 Statistical decision

Convention 1 (Basic elements): X: a sample from a population P ∈ P . Decision: an action we
take after observing X. A : the set of allowable actions. (A ,FA ): the action space. X : the range
of X. Decision rule: a measurable function T from (X ,FX ) to (A ,FA ). If X = x is observed,
then we take the action T (x) ∈ A .

Definition 1 (Loss function): L(P, a): a function from P × A to [0,∞). L(P, a) is Borel for
each P . If X = x is observed and our decision rule is T , then our loss is L(P, T (x)).

Definition 2 (Risk): The averaged loss RT (P ) := E[L(P, T (X))] =
∫

X
L(P, T (X))dPX(x).
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Definition 3 (Comparisons): For decision rules T1 and T2, T1 is as good as T2 iff RT1
(P ) ≤ RT2

(P )

for any P ∈ P and is better than T2 if, in addition, RT1
P < RT2

(P ) for some P . T1 and T2 are
equivalent iff RT1

(P ) = RT2
(P ) for all P ∈ P . Optimal rule: If T ∗ is as good as any other rule in

E , a claass of allowable decision rules, then T ∗ is E -optimal.
Definition 4 (Randomized decision rules): A function δ on X × FA ; for every A ∈ FA ,

δ(·, A) is a Borel function and, for every x ∈ X , δ(x, ·) is a probability measure on (A ,FA ).
If X = x is observed, we have a distribution of actions: δ(x, ·). A nonrandomized rule T is a
special randomized decision rule with δ(x, {a}) = I{a}(T (x)), a ∈ A , x ∈ X . The loss function for
a randomized rule δ is defined as L(P, δ, x) =

∫
A
L(P, a)dδ(x, a), which reduces to the same loss

function when δ is nonrandomized. The risk of a randomized δ is then Rδ(P ) = E[L(P, δ,X)] =∫
X

∫
A
L(P, a)dδ(x, a)dPX(x).

Example 1: X = (X1, · · · , Xn) is a vector of i.i.d. measurements for a parameter θ ∈ R. We
want to estimate θ. Action space: (A ,FA ) = (R,B). A common loss function in this problem is
the squared error loss L(P, a) = (θ − a)2, a ∈ A . Let T (X) = X̄, the sample mean. The loss for
X̄ is (X̄ − θ)2. If the population has mean µ and variance σ2 < ∞, then RX̄(P ) = (µ − θ)2 + σ2

n
.

This problem is a special case of a general problem called estimation. In an estimation problem, a
decision rule T is called an estimator.

Example 2: Let P be a family of distributions, P0 ⊂ P , P1 = {P ∈ P : P ̸∈ P0}.
A hypothesis testing problem can be formulated as that of deciding which of the following two
statements is true: H0 : P ∈ P0 versus H1 : P ∈ P1. H0 is called the null hypothesis and H1

is the alternative hypothesis. The action space for this problem contains only two elements, i.e.,
A = {0, 1}, where 0 is accepting H0 and 1 is rejecting H0. This problem is a special case of a general
problem called hypothesis testing. A decision rule is called a test, which msut have the form IC(X),
where C ∈ FX is called the rejection or critical region.

Definition 5 (0-1 loss): L(P, a) = 0 if a correct decision is made and 1 if an incorrect decision is

made, which leads to the risk RT (P ) =

P (T (X) = 1) = P (X ∈ C) P ∈ P0

P (T (X) = 0) = P (X ̸∈ C) P ∈ P1

.

Definition 6 (Admissibility): Let E be a class of decision rules. A decision rule T ∈ E is called
E -admissible iff there does not exist any S ∈ E that is better than T (in terms of the risk).

Remark 1: An admissible decision rule is not necessarily good. For example, in an estimation
problem a silly estimator T (X) ≡ a constant may be admissible.

Proposition 1: Let T (X) be a sufficient statistic for P ∈ P and let δ0 be a decision rule. Then
δ1(t, A) = E[δ0(X,A)|T = t], which is a randomized decision rule depending only on T , is equivalent
to δ0 if Rδ0(P ) <∞ for any P ∈ P .

Theorem 1: Suppose that A is a convex subset of Rk and that for any P ∈ P , L(P, a) is a
convex function of a. (i) Let δ be a randomized rule satisfying

∫
A
||a||dδ(x, a) < ∞ for any x ∈ X

and let T1(x) =
∫

A
adδ(x, a). Then L(P, T1(x)) ≤ L(P, δ, x) (or L(P, T1(x)) < L(P, δ, x)) if L is

strictly convex in a for any x ∈ X and P ∈ P . (ii) Rao-Blackwell theorem. Let T be a sufficient
statistic for P ∈ P , T0 ∈ Rk be a nonrandomized rule satisfying E||T0|| <∞, and T1 = E[T0(X)|T ].
Then RT1

(P ) ≤ RT0
(P ) for any P ∈ P . If L is strictly convex in a and T0 is not a function of T ,

13
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then T0 is inadmissible.
Definition 7 (Unbiasedness): In an estimation problem, the bias of an estimator T (X) of a

parameter θ of the unknown population is defined to be bT (P ) = E[T (X)] − θ. An estimator T (X)

is unbiased for θ iff bT (P ) = 0 for any P ∈ P .
Approach 1: Define a class E of decision rules that have some desirable properties and then try

to find the best rule in E .
Approach 2: Consider some characteristic RT of RT (P ), for a given decision rule T , and then

minimize RT over T ∈ E . Methods include the Bayes rule and the minimax rule.

2.5 Statistical inference

Definition 1 (Three components in statistical inference): Point estimators, hypothesis tests,
confidence sets.

Definition 2 (Point estimators): Let T (X) be an estimator of θ ∈ R. Bias: bT (P ) = E[T (X)]−θ.
Mean squared error (mse): mseT (P ) = E[T (X)− θ]2 = [bT (P )]

2 +Var(T (X)). Bias and mse are two
common criteria for the performance of point estimators, i.e., instead of considering risk functions,
we use bias and mse to evaluate point estimators.

Definition 3 (Hypothesis tests): To test the hypotheses H0 : P ∈ P0 versus H1 : P ∈ P1, there
are two types of errors we may commit: rejecting H0 when H0 is true (called the type I error) and
accepting H0 when H0 is wrong (called the type II error). A test T : a statistic from X to {0, 1}.

Theorem 1 (Probabilities of making two types of errors): Type I error rate: αT (P ) = P (T (X) =

1), P ∈ P0. Type II error rate: 1− αT (P ) = P (T (X) = 0), P ∈ P1. αT (P ) is also called the power
function of T . Power function is αT (θ) if P is in a parametric family indexed by θ.

Example 1: Let X1, · · · , Xn be i.i.d. from the N (µ, σ2) distribution with an unknown µ ∈ R and
a known σ2. Consider the hypotheses H0 : µ ≤ µ0 versus H1 : µ > µ0, where µ0 is a fixed constant.
Since the sample mean X̄ is sufficient for µ ∈ R, it is reasonable to consider the following class of
tests: Tc(X) = I(c,∞)(X̄). By the property of the normal distributions, αTc

(µ) = P (Tc(X) = 1) =

1− ϕ(
√
n(c−µ)
σ

). Since ϕ(t) is an increasing function of t, supP∈P0
αTc

(µ) = 1− ϕ(
√
n(c−µ0)
σ

). In fact,
it is also true for supP∈P1

[1 − αTc
(µ)] = ϕ(

√
n(c−µ0)
σ

). If we woudl like to use an α as the level of
significance, then the most effective way is to choose a cα such that α = supP∈P0

αTcα
(µ), in which

case cα must satisfy 1 − ϕ(
√
n(cα−µ0)

σ
) = α, i.e., cα = σz1−α/

√
n + µ0, where za = Φ−1(a). It can be

shown that for any test T (X) satisfying supP∈P0
αT (P ) ≤ α, 1− αT (µ) ≥ 1− αTcα

(µ), µ > µ0.
Definition 4 (Significance tests): A common approach of finding an “optimal” test is to assign a

small bound α to the type I error rate αT (P ), P ∈ P0, and then to attempt to minimize the type
II error rate 1− αT (P ), P ∈ P1, subject to supP∈P0

αT (P ) ≤ α. The bound α is called the level of
significance. The left-hand side is called the size of the test T . The level of significance should be
positive, otherwise no test satisfies.

Definition 5 (p-value): It is good practice to determine not only whether H0 is rejected for a
given a and a chosen test Tα, but also the smallest possible level of significance at which H0 would
be rejected for the computed Tα(x), i.e., α̂ = inf{α ∈ (0, 1) : Tα(x) = 1}. Such an α̂, which depends
on x and the chosen test and is a statistic, is called the p-value for the test Tα.

14
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Example 2: Let us calculate the p-value for Tcα in Example 1. Note that α = 1−ϕ(
√
n(cα−µ0)

σ
) >

1 − Φ(
√
n(X̄−µ0)

σ
) if and only if X̄ > cα (or Tcα(x) = 1). Hence, 1 − ϕ(

√
n(X̄−µ0)

σ
) = inf{α ∈ (0, 1) :

Tcα(x) = 1} = α̂(X) is the p-value for Tcα . It turns out that Tcα(x) = I(0,α)(α̂(X)).
Definition 6 (Confidence sets) θ: a k-vector of unknown parameters related to the unknown

P ∈ P . If a Borel set C(X) (in the range of θ) depending only on the sample X such that
infP∈P P (θ ∈ C(X)) ≥ 1− α, where α is a fixed constant in (0, 1), then C(X) is called a confidence
set for θ with level of significance 1 − α. The left-hand side is called the confidence coefficient of
C(X), which is the highest possible level of significance for C(X). A confidence set is a random
element that covers the unknown θ with certain probability.

Example 3: Let X1, · · · , Xn be i.i.d. from the N (µ, σ2) distribution with both µ ∈ R and σ2 > 0

unknown. Let θ = (µ, σ2) and α ∈ (0, 1) be given. Let X̄ be the sample mean and S2 be the
sample variance. Since (X̄, S2) is sufficient, we focus on C(X) that is a function of (X̄, S2). Since
√
n(X̄−µ)/σ has the N (0, 1) distribution, P (−c̃α ≤ X̄−µ

σ/
√
n
≤ c̃α) =

√
1− α, where c̃α = Φ−1( 1+

√
1−α
2

).
Since the χ2 distribution distribution χ2

n−1 is a known distribution, we can always find two constants
c1α and c2α such that P (c1α ≤ (n−1)S2

σ2 ≤ c2α) =
√
1− α. Then P (−c̃α ≤ X̄−µ

σ/
√
n

≤ c̃α, c1α ≤
(n−1)S2

σ2 ≤ c2α) = 1 − α. The LHS defines a set in the range of θ = (µ, σ2) bounded by two straight
lines,σ2 = (n− 1)S2/ciα, i = 1, 2, and a curve σ2 = n(X̄ − µ)2/c̃2α. This set is a confidence set for θ
with confidence coefficient 1− α.

Definition 7 (Randomized tests): Since the action space contains only two points, 0 and 1, for
a hypothesis testing problem, any randomized test δ(X,A) is equivalent to a statistic T (X) ∈ [0, 1]

with T (x) = δ(x, {1}) and 1 − T (X) = δ(x, {0}). A nonrandomized test is obviously a special
case where T (x) does not take any value in (0, 1). For any randomized test T (X), we define the
type I error probability to be αT (P ) = E[T (X)], P ∈ P0, and the type II error probability to be
1 − αT (P ) = E[1 − T (X)], P ∈ P1. For a class of randomized tests, we would like to minimize
1− αT (P ) subject to supP∈P0

αT (P ) = α.
Definition 8 (Consistency of point estimators): Let X = (X1, · · · , Xn) be a sample from P ∈ P ,

Tn(X) be an estimator of θ for every n, and {an} be a sequence of positive constants, an → ∞. (i)
Tn(x) is consistent for θ iff Tn(x) →p θ w.r.t. any P . (ii) Tn(x) is an-consistent for θ iff an[Tn(X)−θ] =
Op(1) w.r.t. any P . (iii) Tn(x) is strongly consistent for θ iff Tn(x) →a.s. θ w.r.t. any P . (iv) Tn(X)

is Lr-consistent for θ iff Tn(x) →Lr
θ w.r.t. for any P for some fixed r > 0; if r = 2, L2-consistency

is called consistency in mse.
Remark 1 (Consistency is an essential requirement): Like the admissibility, consistency is an

essential requirement: any inconsistent estimators should not be used, but there are many consistent
estimators and some may not be good. Thus, consistency should be used together with other criteria.

Remark 2 (Approximate and asymptotic bias): Unbiasedness is a criterion for point estimator.
In some cases, however, there is no unbiased estimator. Furthermore, having a “slight” bias in some
cases may not be a bad idea.

Definition 9: (i) Let ξ, ξ1, ξ2, · · · be random variables and {an} be a sequence of positive numbers
satisfying an → ∞ or an → a > 0. If anξn →d ξ and E|ξ| < ∞, then Eξ/an is called an asymptotic
expectation of ξn. (ii) For a point estimator Tn of θ, an asymptotic expectation of Tn− θ, if it exists,

15



UNBIASED ESTIMATION

is called an asymptotic bias of Tn and denoted by b̃Tn
(P ). If limn→∞ b̃Tn

(P ) = 0 for any P , then Tn

is asymptotically unbiased.
Proposition 1 (Asymptotic expectation is essentially unique): For a sequence of random variables

{ξn}, suppose both Eξ/an and Eη/bn are asymptotic expectations of ξn. Then, one of the following
three must hold: (a) Eξ = Eη = 0; (b) Eξ ̸= 0,Eη = 0, and bn/an → 0; (c) Eξ ̸= 0,Eη ̸= 0, and
(Eξ/an)/(Eη/bn) → 1.

Example 4 (Functions of sample means): We consider the case where X1, · · · , Xn are i.i.d.
random k-vectors with finite Σ = Var(X1), Tn = g(X̄), where g is a function on Rk that is second-
order differentiable at µ = EX1. Consider Tn as an estimator of θ = g(µ). By Taylor’s expansion,
Tn−θ = [∇g(µ)]T (X̄−µ)+2−1(X̄−µ)T∇2g(µ)(X̄−µ)+op(n−1). By the CLT, 2−1n(X̄−µ)∇2g(µ)(X̄−
µ) →d 2−1ZTΣ∇2g(µ)ZΣ, where ZΣ = Nk(0,Σ). Thus, E[ZT

Σ∇2g(µ)ZΣ]

2n
= tr(∇2g(µ)Σ)

2n
is the n−1 order

asymptotic bias of Tn = g(X̄).
Definition 10 (Asymptotic variance and amse): Let Tn be an estimator of θ for every n and {an}

be a sequence of positive numbers satisfying an → ∞ or an → a > 0. Assume that an(Tn − θ) →d Y

with 0 < EY 2 < ∞. (i) The asymptotic mean squared error of Tn, denoted by amseTn
(P ), is

defined as the asymptotic expectation of (Tn − θ)2, amseTn
(P ) = EY 2/a2n. The asymptotic variance

of Tn is defined as σ2
Tn
(P ) = Var(Y )/a2n. (ii) Let T ′

n be another estimator of θ. The asymptotic
relative efficiency of T ′

n w.r.t. Tn is defined as eT ′
n,Tn

= amseTn
(P )/amseT ′

n
(P ). (iii) Tn is said to be

asymptotically more efficient than T ′
n iff lim supn eT ′

n,Tn
(P ) ≤ 1 for any P and < 1 for some P .

Proposition 2: Let Tn be an estimator of θ for every n and {an} be a sequence of positive
numbers satisfying an → ∞ or an → a > 0. If an(Tn − θ) →d Y with 0 < EY 2 < ∞, then (i)
EY 2 ≤ lim infn E[a2n(Tn − θ)2] and (ii) EY 2 = limn→∞ E[a2n(Tn − θ)2] if and only if {a2n(Tn − θ)2} is
uniformly integrable.

Example 5: Let X1, · · · , Xn be i.i.d. from the Poisson distribution P (θ) with an unknown θ > 0.
Consider the estimation of θ = P (Xi = 0) = e−θ. Let T1n = Fn(0), where Fn is the empirical c.d.f.
Then T1n is unbiased and has mseT1n

(θ) = e−θ(1− e−θ)/n. Also,
√
n(T1n− θ) →d N (0, e−θ(1− e−θ))

by the CLT. Thus, in the case amseT1n
(θ) = mseT1n

(θ). Consider T2n = e−X̄ . Note that ET2n =

enθ(e
−1/n−1), hence nbT2n(θ) → θe−θ/2. Using the CLT, we can show that

√
n(T2n−θ) →d N (0, e−2θθ).

Then amseT2n
(θ) = e−2θθ/n. Thus, the asymptotic relative efficiency of T1n w.r.t. T2n is eT1n,T2n

=

θ/(eθ − 1) < 1. This shows that T2n is asymptotically more efficient than T1n.

3 Unbiased Estimation

3.1 UMVUE: functions of sufficient and complete statistics

Definition 1 (Estimable): If there exists an unbiased estimator of ϑ, then ϑ is called an estimable
parameter.

Definition 2 (UMVUE): An unbiased estimator T (X) of θ is called uniformly minimum variance
unbiased estimator (UMVUE) iff Var(T (X)) ≤ Var(U(X)) for any P ∈ P and any other unbiased
estimator U(X) of θ.

Theorem 1 (Lehmann-Scheffé theorem): Suppose that there exists a sufficient and complete
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statistic T (X) for P ∈ P . If θ is estimable, i.e., there is a unique unbiased estimator of θ, then there
is a unique UMVUE of θ that is of the form h(T ) with a Borel function h.

The first method (Directly solving for h): Need the distribution of T . Try some function h to
see if E[h(T )] is related to θ. If E[h(T )] = θ for all P , what should h be?

Example 1: Let X1, · · · , Xn be i.i.d. from the uniform distribution on (0, θ), θ > 0. Consider ϑ =

θ. Since the sufficient and complete statistic X(n) has the Lebesgue p.d.f. nθ−nxn−11(0,θ)(x),EX(n) =

nθ−n
∫ θ
0
xndx = n

n+1
θ. An unbiased estimator of θ is (n+ 1)X(n)/n, which is the UMVUE. Consider

now ϑ = g(θ), where g is a differentiable function on (0, θ). An unbiased estimator h(X(n)) of
ϑ must satisfy θng(θ) = n

∫ θ
0
h(x)xn−1dx for all θ > 0. Hence, the UMVUE of ϑ is h(X(n)) =

g(X(n)) + n−1X(n)g
′(X(n)).

The second method (When a sufficient and complete statistic is available): Find an unbiased
estimator of θ, say U(X). Conditioning on a sufficient and complete statistic T (X): E[U(X)|T ] is
the UMVUE of θ. We need to derive an explicit form of E[U(X)|T ].

Example 2: Let X1, · · · , Xn be i.i.d. from the exponential distribution Exp(0, θ). Fθ(x) =

(1− e−x/θ)1(0,θ)(x). Consider the estimation of ϑ = 1−Fθ(t). X̄ is sufficient and complete for θ > 0.
1(t,∞)(X1) is unbiased for ϑ, E[1(t,θ)(X1)] = P (X1 > t) = ϑ. Hence T (X) = E[1(t,∞)(X1)|X̄] =

P (X1 > t|X̄) is the UMVUE of ϑ. By Basu’s theorem, X1/X̄ and X̄ are independent. Thus,
P (X1 > t|X̄ = x̄) = P (X1/X̄ > t/X̄|X̄ = x̄) = P (X1 > X̄ > t/x̄). To compute this unconditional
probability, we need the distribution of X1/

∑n
i=1Xi = X1/(X1+

∑n
i=2Xi). Using the transformation

technique and the fact that
∑n

i=2Xi is independent of X1 and has a gamma distribution, we obtain
that X1/

∑n
i=1Xi has the Lebesgue p.d.f. (n − 1)(1 − x)n−21(0,1)(x). Hence P (X1 > t|X̄ = x̄) =

(n− 1)
∫ 1

t/(nx̄)
(1− x)n−2dx = (1− t

nx̄
)n−1 and the UMVUE of ϑ is T (X) = (1− t

nX̄
)n−1.

Example 3: Let X1, · · · , Xn be i.i.d. from an unknown population P in a nonparametric family
P . In many cases the vector of order statistics, T = (X(1), · · · , X(n)), is sufficient and complete for
P ∈ P . Note that an estimator ϕ(X1, · · · , Xn) is a function of T iff the function ϕ is symmetric in
its n arguments. Hence, if T is sufficient and complete, then a symmetric unbiased estimator of any
estimable ϑ is the UMVUE. Specific examples: X̄ is the UMVUE of ϑ = EX1, S2 is the UMVUE of
Var(X1), n−1

∑n
i=1X

2
i − S2 is the UMVUE of (EX1)

2, Fn(t) is the UMVUE of P (X1 ≤ t) for any
fixed t. The previous conclusions are not true if T is not sufficient and complete for P ∈ P .

Remark 1 (Nonexistence of any UMVUE): If n > 2 and P contains all symmetric distributions
having Lebesgue p.d.f.’s and finite means, then there is no UMVUE for µ = EX1.

Example 4 (Survey samples from a finite population): Let P = {1, · · · , N} be a finite population
of interest. For each i ∈ P , let yi be a value of interest associated with unit i. Let s = {i1, · · · , in}
be a subset of distinct elements of P , which is a sample selected with selection probability p(s),
where p is known. The value yi is observed if and only if i ∈ s. If p(s) is constant, the sampling plan
is called the simple random sampling without replacement. Consider the estimation of Y =

∑N
i=1 yi,

the population total as the parameter of interest. Let X = (Xi, i ∈ s) be the vector such that P (X1 =

yi1 , · · · , Xn = yin) = p(s)/n!. Let Y be the range of yi, θ = (y1, · · · , yN ) and Θ =
∏N
i=1 Y . Under

simple random sampling without replacement, the population under consideration is a parametric
family indexed by θ ∈ Θ.
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Theorem 2 (Watson-Royall theorem): (i) If p(s) > 0 for all s, then the vector of order statistics
X(1) ≤ · · · ≤ X(n) is complete for θ ∈ Θ. (ii) Under simple random sampling without replacement, the
vector of order statistics is sufficient for θ ∈ Θ. (iii) Under simple random sampling without replace-
ment, for any estimable function of θ, its unique UMVUE is the unbiased estimator g(X1, · · · , Xn),
where g is symmetric in its n arguments.

3.2 Characteristic of UMVUE and Fisher information bound

Remark 1: When a complete and sufficient statistic is not available, it is usually very difficult to
derive a UMVUE. In some cases, the following result can be applied, if we have enough knowledge
about unbiased estimators of 0.

Theorem 1: Let U be the set of all unbiased estimators of 0 with finite variances and T be an
unbiased estimator of θ with E(T 2) < ∞. (i) A necessary and sufficient condition for T (X) to be a
UMVUE of θ is that E[T (X)U(X)] = 0 for any U ∈ U and any P ∈ P . (ii) Suppose that T = h(T̃ ),
where T̃ is a sufficient statistic for P ∈ P and h is a Borel function. Let U‹T be the subset of U

consisting of Borel functions of T̃ . Then a necessary and sufficient condition for T to be a UMVUE
of θ is that E[T (X)U(X)] = 0 for any U ∈ U‹T and any P ∈ P . The theorem can be used to find
a UMVUE, check whether a particular estimator is a UMVUE and show the nonexistence of any
UMVUE.

Theorem 2: (i) If Tj is a UMVUE of θj , j = 1, · · · , k, then
∑k

j=1 cjTj is a UMVUE of θ =∑k
j=1 cjθj for any constants c1, · · · , ck. (ii) If T1 and T2 are two UMVUE’s of θ, then T1 = T2 a.s. P

for any P ∈ P .
Example 1: Let X1, · · · , Xn be i.i.d. from the uniform distribution on the interval (0, θ). We

have shown that (1+n−1)X(n) is the UMVUE for θ when the parameter space is Θ = (0,∞). Suppose
now that Θ = [1,∞). Then X(n) is not complete, although it is still sufficient for θ. We now illustrate
how to use Theorem 1 to find a UMVUE of θ. Let U(X(n)) be an unbiased estimator of 0. Since
X(n) has the Lebesgue p.d.f nθ−nxn−11(0,θ)(x), 0 =

∫ 1

0
U(x)xn−1dx +

∫ θ
1
U(x)xn−1dx for all θ ≥ 1.

This implies that U(x) = 0 a.e. Lebesgue measure on [1,∞) and
∫ 1

0
U(x)xn−1dx = 0. Consider

T = h(X(n)). To have E(TU) = 0, we must have
∫ 1

0
h(x)U(x)xn−1dx = 0. Thus, we may consider the

following function: h(x) =

 c 0 ≤ x ≤ 1

bx x > 1
, where c and b are some constants. Since E[h(X(n))] = θ,

we obtain that θ = cP (X(n) ≤ 1) + bE[X(n)1(1,∞)(X(n))] = cθ−n + bn
n+1

(θ − θ−n). Thus, c = 1 and

b = (n+ 1)/n. The UMVUE of θ is then h(X(n)) =

 1 0 ≤ X(n) ≤ 1

(1 + n−1)X(n) X(n) > 1
.

Theorem 3 (Cramér-Rao lower bound): Let X = (X1, · · · , Xn) be a sample from P ∈ P = {Pθ :
θ ∈ Θ}, where Θ is an open set in Rk. Suppose that T (X) is an estimator with E[T (X)] = g(θ) being a
differentiable function of θ; Pθ has a p.d.f. fθ w.r.t. a measure ν for all θ ∈ Θ; and fθ is differentiable as
a function of θ and satisfies ∂

∂θ

∫
h(x)fθ(x)dν =

∫
h(x) ∂

∂θ
fθ(x)dν, θ ∈ Θ for h(x) ≡ 1 and h(x) = T (x).

Then Var(T (X)) ≥ [ ∂
∂θ
g(θ)]T [I(θ)]−1 ∂

∂θ
g(θ), where I(θ) = E{ ∂

∂θ
log fθ(X)[ ∂

∂θ
log fθ(x)]T } is assumed

to be positive definite for any θ ∈ Θ and is called the Fisher information matrix.
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Proposition 1: (i) If X and Y are independent with the Fisher information matrices IX(θ) and
IY (θ), respectively, then the Fisher information about θ contained in (X,Y ) is Ix(θ)+IY (θ). (ii) Sup-
pose that X has the p.d.f. fθ that is twice differentiable in θ and ∂

∂θ

∫
h(x)fθ(x)dν =

∫
h(x) ∂

∂θ
fθ(x)dν

holds with h(x) ≡ 1 and fθ replaced by ∂fθ/∂θ. Then I(θ) = −E[ ∂2

∂θ∂θT
log fθ(X)].

Remark 2: If θ = ψ(η) and ψ is differentiable, then the Fisher information that X contains
about η is ∂

∂η
ψ(η)I(ψ(η))[ ∂

∂η
ψ(η)]T . However, the Cramér-Rao lower bound is not affected by any

one-to-one reparameterization.
Proposition 2: Suppose that the distribution of X is from an exponential family {fθ : θ ∈ Θ},

i.e., the p.d.f. of X w.r.t. a σ-finite measure is fθ(x) = exp{[η(θ)]TT (X) − ξ(θ)}c(x), where Θ is
an open subset of Rk. (i) The regularity condition ∂

∂θ

∫
h(x)fθ(x)dν =

∫
h(x) ∂

∂θ
fθ(x)dν is satisfied

for any h with E|h(X)| < ∞ and I(θ) = −E[ ∂2

∂θ∂θT
log fθ(X)]. (ii) If I(η) is the Fisher information

matrix for the natural parameter η, then the variance-covariance matrix Var(T ) = I(η). (iii) If I(θ)
is the Fisher information matrix for the parameter ϑ = E[T (X)], then Var(T ) = [I(ϑ)]−1.

3.3 U- and V-statistics

Definition 1 (U-statistics): Let X1, · · · , Xn be i.i.d. from an unknown population P in a non-
parametric family P . If the vector of order statistic is sufficient and complete for P ∈ P , then a
symmetric unbiased estimator of an estimable θ is the UMVUE of θ. In many problems, parameters
to be estimated are of the form θ = E[h(X1, · · · , Xm)] with a positive integer m and a Borel func-
tion h that is symmetric and satisfies E|h(X1, · · · , Xm)| < ∞ for any P ∈ P . An effective way of
obtaining an unbiased estimator of θ is to use Un = (Cmn )−1

∑
c h(Xi1 , · · · , Xim), where

∑
c denotes

the summation over the Cmn combinations of m distinct elements {i1, · · · , im} from {1, · · · , n}. The
statistic is called a U-statistic with kernel h of order m.

Example 1: Consider the estimation of µm, where µ = EX1 and m is an integer > 0. Using
h(x1, · · · , xm) = x1, · · ·xm, we obtain the following U-statistic for µm: Un = (Cmn )−1

∑
cXi1 · · ·Xim .

Consider next the estimation of σ2 = E[(X1−X2)
2/2], we obtain the following U-statistic with kernel

h(x1, x2) = (x1 − x2)
2/2: Un = 2

n(n−1)

∑
1≤i<j≤n

(Xi−Xj)
2

2
= 1

n−1
(
∑n

i=1X
2
i − nX̄2) = S2, which is the

sample variance.
Theorem 1 (Hoeffding’s theorem): For a U-statistic Un with E[h(X1, · · · , Xm)]

2 <∞,Var(Un) =
(Cmn )−1

∑m
k=1 C

k
mC

m−k
n−mζk, where ζk = Var(hk(X1, · · · , Xk)), hk(x1, · · · , xk) = E[h(X1, · · · , Xm)|X1 =

x1, · · · , Xk = xk] = E[h(x1, · · · , xk, Xk+1, · · · , Xm)], h̃k = hk − E[h(X1, · · · , Xm)].
Proposition 1: (i) m2

n
ζ1 ≤ Var(Un) ≤ m

n
ζm; (ii) (n+1)Var(Un+1) ≤ nVar(Un) for any n > m; (iii)

For any fixed m and k = 1, · · · ,m, if ζj = 0 for j < k and ζk > 0, then Var(Un) = k!(Ck
m)2ζk
nk +O( 1

nk+1 ).
Example 2: Consider h(x1, x2) = x1x2, the U-statistic unbiased for µ2, µ = EX1. Note that

h1(x1) = µx1, h̃1(x1) = µ(x1 − µ). ζ1 = E[h̃1(X1)]
2 = µ2Var(X1) = µ2σ2, h̃(x1, x2) = x1x2 −

µ2, and ζ2 = Var(X1X2) = (µ2 + σ2)2 − µ4. Thus for Un = (C2
n)

−1
∑

1≤i<j≤nXiXj , Var(Un) =

(C2
n)

−1(C1
2C

1
n−2ζ1 + C2

2C
0
n−2ζ2) =

2
n(n−1)

[2(n− 2)µ2σ2 + (µ2 + σ2)2 − µ4] = 4µ2σ2

n
+ 2σ4

n(n−1)
.

Remark 1 (Asymptotic distributions of U-statistics): For nonparametric P , the exact distribu-
tion of Un is hard to derive. We study the method of projection, which is particularly effective for
studying asymptotic distributions of U-statistics.
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Definition 2: Let Tn be a given statistic based on X1, · · · , Xn. The projection of Tn on kn random
elements Y1, · · · , Ykn is defined to be Ťn = E(Tn) +

∑kn
i=1[E(Tn|Yi)− E(Tn)].

Theorem 2: Let Tn be a symmetric statistics with Var(Tn) < ∞ for every n and Ťn be the
projection of Tn on X1, · · · , Xn. Then E(Tn) = E(Ťn) and E(Tn − Ťn)

2 = Var(Tn)− Var(Ťn).
Example 3: For a U-statistic Un, one can show that Ǔn = E(Un)+m

n

∑n
i=1 h̃1(Xi), where Ǔn is the

projection of Un on X1, · · · , Xn and h̃1(x) = h1(x)−E[h(X1, · · · , Xm)], h1(x) = E[h(x,X2, · · · , Xm)].
Hence, if ζ1 = Var(h̃1(Xi)) > 0,Var(Ǔn) = m2ζ1/n and E(Un − Ǔn)

2 = O(n−2). If ζ1 = 0 but ζ2 > 0,
then we can show that E(Un − Ǔn)

2 = O(n−3). One may derive results for the cases where ζ2 = 0,
but the case of either ζ1 > 0 or ζ2 > 0 is the most interesting case in applications.

Theorem 3: Let Un be a U-statistic with E[h(X1, · · · , Xm)]
2 < ∞. (i) If ζ1 > 0, then

√
n[Un −

E(Un)] →d N (0,m2ζ1). (ii) If ζ1 = 0 but ζ2 > 0, then n[Un − E(Un)] →d
m(m−1)

2

∑∞
j=1 λj(χ

2
1j − 1),

where χ2
1j ’s are i.i.d. random variables having the chi-square distribution χ2

1 and λj ’s are some
constants (which may depend on P ) satisfying

∑∞
j=1 λ

2
j = ζ2.

Proposition 2: E[m(m−1)
2

∑∞
j=1 λj(χ

2
1j − 1)]2 = m2(m−1)2

2
ζ2.

Definition 3 (V-statistics): Let X1, · · · , Xn be i.i.d. from P . For every U-statistic Un as an esti-
mator θ = E[h(X1, · · · , Xm)], there is a closely related V-statistic defined by Vn = 1

nm

∑n
i1=1 · · ·

∑n
im=1

h(Xi1 , · · · , Xim). As an estimator of θ, Vn is biased; but the bias is small asymptotically. For a fixed
n, Vn may be better than Un in terms of the mse.

Proposition 3: (i) Assume that E|h(Xi1 , · · · , him)| < ∞ for all 1 ≤ i1 ≤ · · · ≤ im ≤ m.
Then the bias of Vn satisfies bVn

(P ) = O(n−1). (ii) Assume that E[h(Xi1 , · · · , Xim)]
2 < ∞ for

all 1 ≤ i1 ≤ · · · ≤ im ≤ m. Then the variance of Vn satisfies Var(Vn) = Var(Un) +O(n−2).
Theorem 4: Let Vn be a V-statistic with E[h(Xi1 , · · · , Xim)]

2 < ∞ for all 1 ≤ i1 ≤ · · · ≤
im ≤ m. (i) If ζ1 = Var(h1(X1)) > 0, then

√
n(Vn − θ) →d N (0,m2ζ1). (ii) If ζ1 = 0 but ζ2 =

Var(h2(X1, X2)) > 0, then n(Vn − θ) →d
m(m−1)

2

∑∞
j=1 λjχ

2
1j .

3.4 Construction of unbiased or approximately unbiased estimators and method
of moments

Definition 1 (Survey samples from a finite population): Let P = {1, · · · , N} be a finite pop-
ulation of interest. For each i ∈ P , let yi be a value of interest associated with unit i. Let
s = {i1, · · · , in} be a subset of distinct elements of P , which is a sample selected with selection
probability p(s), where p is known. The value yi is observed iff i ∈ s. Y =

∑N
j=1 yj is the unknown

population total of interest. Define πi = probability that i ∈ s, i = 1, · · · , N .
Theorem 1: (i) (Horvitz-Thompson). If πi > 0 for i = 1, · · · , N and πi is known when i ∈ s, then

Ŷht =
∑

i∈s yi/πi is an unbiased estimator of the population total Y . (ii) Define πij = probability
that i ∈ s and j ∈ s, i = 1, · · · , N, j = 1, · · · , N . Then Var(Ŷht) =

∑N
i=1

∑N
j=i+1(πiπj−πij)(

yi
πi
− yj
πj
)2.

Remark 1 (Deriving asymptotically unbiased estimators): An exactly unbiased estimator may
not exist, or is hard to obtain. We often derive asymptotically unbiased estimators. Functions of
sample means are popular estimators.

Remark 2 (Functions of unbiased estimators): If the parameter to be estimated is ϑ = g(θ)

with a vector-valued parameter θ and Un is a vector of unbiased estimators of components of θ,
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then Tn = g(Un) is often asymptotically unbiased for ϑ. Note that E(Tn) = Eg(Un) may not exists.
Assume that g is differentiable and cn(Un−θ) →d Y . Then amseTn

(P ) = E{[∇g(θ)]TY }2/c2n. Hence,
Tn has a good performance in terms of amse if Un is optimal in terms of mse.

Definition 2 (Method of moments): Consider a parametric problem where X1, · · · , Xn are i.i.d.
random variables from Pθ, θ ∈ Θ ⊂ Rk, and E|X1|k <∞. Let µj = EXj

1 be the jth moment of P and
let µ̂j = 1

n

∑n
i=1X

j
i be the jth sample moment, which is an unbiased estimator of µj , j = 1, · · · , k.

Typically, µj = hj(θ), j = 1, · · · , k, for some functions hj on Rk. By substituting µj ’s on the left-hand
side by the sample moments µ̂j , we obtain a moment estimator θ̂, i.e. θ̂ satisfies µ̂j = hj(θ̂), j =

1, · · · , k. This method of deriving estimators is called the method of moments.
Example 1: Let X1, · · · , Xn be i.i.d. from a population Pθ indexed by the parameter θ = (µ, σ2),

where µ = EX1 ∈ R and σ2 = Var(X1) ∈ (0,∞). Since EX1 = µ and EX2
1 = σ2 + µ2, setting µ̂1 = µ

and µ̂2 = σ2 + µ2 we obtain the moment estimator θ̂ = (X̄, 1
n

∑n
i=1(Xi − X̄)2).

4 Estimation in Parametric Models

4.1 Bayesian approach

Definition 1 (Bayesian approach): X is from a population in a parametric family P = Pθ : θ ∈ Θ,
where θ ⊂ Rk for a fixed integer k ≥ 1. θ is viewed as a realization of a random vector θ ∈ Θ whose
prior distribution is Π. Prior distribution: past experience, past data, or a statistician’s belief
(subjective). Sample X ∈ X : from Pθ = Px|θ, the conditional distribution of X given θ. Posterior
distribution: updated prior distribution using observed X = x.

Theorem 1 (Bayes formula): Assume P = {Px|θ : θ ∈ Θ} is dominated by a σ-finite measure
ν and fθ(x) = dPx|θ/dν is a Borel function on (X × Θ, σ(BX × BΘ)). Let Π be a prior distri-
bution on Θ. Suppose that m(x) =

∫
Θ
fθ(x)dΠ > 0. (i) The posterior distribution Pθ|x << Π

and dPθ|x/dΠ = fθ(x)/m(x). (ii) If Π << λ and dπ/dλ = π(θ) for a σ-finite measure λ, then
dPθ|x/dλ = fθ(x)π(θ)/m(x).

Definition 2 (Bayes action): Let A be an action space in a decision problem and L(θ, a) ≥ 0 be
a loss function. For any x ∈ X , a Bayes action w.r.t. Π is any δ(x) ∈ A such that E[L(θ, δ(x))|X =

x] = mina∈A E[L(θ, a)|X = x] where the expectation is w.r.t. the posterior distribution Pθ|x.
Definition 3 (Conjugate prior): An interesting phenomenon is that the prior and the posterior

are in the same parametric family of distributions. Such a prior is called a conjugate prior.
Definition 4 (Generalized Bayes action): The minimization in Definition 4.1 is the same as the

minimizing
∫
Θ
L(θ, δ(x))fθ(x)dΠ = mina∈A

∫
Θ
L(θ, a)fθ(x)dΠ. This is still defined even if Π is not a

probability measure but a σ-finite measure on Θ, in which case m(x) may not be finite. If Π(Θ) ̸= 1,
Π is called an improper prior. δ(x) is called a generalized Bayes action.

Definition 5 (Hyperparameters and empirical Bayes): A Bayes action depends on the chosen prior
with a vector ξ of parameters called hyperparameters. If the hyperparameters ξ is unknown, one way
to solve the problem is to estimate ξ using some historical data; the resulting Bayes action is called an
empirical Bayes action. If there is no historical data, we may estimate ξ using data x and the resulting
Bayes action is also called an empirical Bayes action. The simplest empirical Bayes method is to
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estimate ξ by viewing x as a “sample” from the marginal distribution Px|ξ(A) =
∫
Θ
Px|θ(A)dΠθ|ξ, A ∈

BX , where Πθ|ξ is a prior depending on ξ or from the marginal p.d.f. m(x) =
∫
Θ
fθ(x)dΠ, if Px|θ

has a p.d.f. fθ. The method of moments can be applied to estimate ξ.
Example 1: Let X = (X1, · · · , Xn) and Xi’s be i.i.d. with an unknown mean µ ∈ R and a known

variance σ2. Assume the prior Πµ|ξ has mean µ0 and variance σ2
0 , ξ = (µ0, σ

2
0). To obtain a moment

estimate of ξ, we need to calculate
∫
Rn x1m(x)dx and

∫
Rn x

2
1m(x)dx, x = (x1, · · · , xn). These two

integrals can be obtained without knowingm(x). Note that
∫
Rn x1m(x)dx =

∫
Θ

∫
Rn x1fµ(x)dxdΠµ|ξ =∫

R µdΠµ|ξ = µ0 and
∫
Rn x

2
1m(x)dx =

∫
Θ

∫
Rn x

2
1fµ(x)dxdΠµ|ξ = σ2 +

∫
R µ

2dΠµ|ξ = σ2 + µ2
0 + σ2

0 .
Thus, by viewing x1, · · · , xn as a sample from m(x), we obtain the moment estimates µ̂0 = x̄ and
σ̂2
0 = 1

n

∑n
i=1(xi − x̄)2 − σ2, where x̄ is the sample mean of xi’s.

Definition 6 (Hierarchical Bayes): Instead of estimating hyperparameters, in the hierarchical
Bayes approach we put a prior on hyperparameters. Let Πθ|ξ be a prior with a hyperparameter
vector ξ and let Λ be a prior on Ξ, the range of ξ. Then the “marginal” prior for θ is defined
by Π(B) =

∫
Ξ
Πθ|ξ(B)dΛ(ξ), B ∈ BΘ. If the second-stage prior Λ also depends on some unknown

hyperparameters, then one can go on to consider a third-stage prior. In most applications, however,
two-stage priors are sufficient, since misspecifying a second-stage prior is much less serious than
misspecifying a first-stage prior.

Example 2: If X̄ ∼ N (µ, σ2/n) with a known σ2, the prior π(µ|ξ) is the p.d.f of N (ξ, σ2
0) with a

known σ2
0 , and the prior of ξ is N (µ0, τ

2) with a known µ0 and τ 2, then the marginal prior p.d.f of
µ is N (µ0, σ

2
0 + τ 2).

4.2 Bayes rule and computation

Theorem 1 (Admissibility of Bayes rule) In a decision problem, let δ(x) be a Bayes rule w.r.t. a
prior Π. (i) If δ(X) is a unique Bayes rule, then δ(X) is admissible. (ii) If Θ is countable set, the
Bayes risk rδ(Π) <∞, and Π gives positive probability to each θ ∈ Θ, then δ(X) is admissible. (iii)
Let E be the class of decision rules having continuous risk functions. If δ(X) ∈ E , rδ(Π) < ∞, and
Π gives positive probability to any open subset of Θ, then δ(X) is E -admissible.

Theorem 2: Suppose that Θ is an open set of Rk. In a decision problem, let E be the class
of decision rules having continuous risk functions. A decision rule T ∈ E is E -admissible if there
exists a sequence {Πj} of priors such that (a) the generalized Bayes risks rT (Πj) are finite for all
j; (2) for any θ0 ∈ Θ and η > 0, limj→∞

rT (Πj)−r∗j (Πj)

Πj(Oθ0,η)
= 0, where r∗j (Πj) = infT∈E rT (Πj) and

Oθ0,η = {θ ∈ Θ : ||θ − θ0|| < η} with Πj(Oθ0,η) <∞ for all j.
Proposition 1 (Bayes estimators are biased): If δ(X) is a Bayes estimator of ϑ = g(θ) under the

squared error loss, then δ(X) is not unbiased except in the trivial case where rδ(Π) = 0.
Theorem 3: Suppose that X has a p.d.f. fθ(x) w.r.t. a σ-finite measure ν. Suppose that

θ = (θ1, θ2), θj ∈ Θj , and that the prior has a p.d.f π(θ) = πθ1|θ2(θ1)πθ2(θ2) where πθ2(θ2) is a p.d.f.
w.r.t. a σ-finite measure ν2 on Θ2 and for any given θ2, πθ1|θ2(θ1) is a p.d.f. w.r.t. a σ-finite measure
ν1 on Θ1. Suppose further that if θ2 is given, the Bayes estimator of h(θ1) = g(θ1, θ2) under the
squared error loss is δ(X, θ2). Then the Bayse estimator of g(θ1, θ2) under the squared error loss is
δ(X) with δ(x) =

∫
Θ2
δ(x, θ2)pθ2|x(θ2)dν2 where pθ2|x(θ2) is the posterior p.d.f. of θ2 given X = x.
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Remark 1: Often, Bayes actions or estimators have to be computed numerically. Typically we
need to compute Ep(g) =

∫
Θ
g(θ)p(θ)dν with some function g, where p(θ) is a p.d.f. w.r.t. a σ-finite

measure ν on (Θ,BΘ) and Θ ⊂ Rk. There are many numerical methods for computing integrals
Ep(g).

Definition 1 (The simple Monte Carlo method): Generate i.i.d. θ(1), · · · , θ(m) from a p.d.f. h(θ) >
0 w.r.t. ν. By the SLLN, as m→ ∞, Êp(g) = 1

m

∑m
j=1

g(θ(j))p(θ(j))
h(θj)

→a.s.
∫
Θ
g(θ)p(θ)
h(θ)

h(θ)dν = Ep(g).
Remark 2: The simple Monte Carlo method may not work well because (i) the convergence of

Êp(g) is very slow when k (the dimension of Θ) is large; (ii) generating a random vector from some
k-dimensional distribution may be difficult, if not impossible.

Remark 3 (More sophisticated MCMC methods): Different from the simple Monte Carlo in two
aspects: (i) generating random vectors can be done using distributions whose dimensions are much
lower than k; (ii) θ(1), · · · , θ(m) are not independent, but form a homogeneous Markov chain.

Definition 2 (Gibbs sampler): Let y = (y1, y2, · · · , yd). yj ’s may be vectors with different dimen-
sions. At step t = 1, 2, · · · , given y(t−1), generate y(t)1 from P (y

(t−1)
2 , · · · , y(t−1)

d |y(t−1)
1 ), · · · , y(t)j from

P (y
(t)
1 , · · · , y(t)j−1, y

(t−1)
j+1 , · · · , y(t−1)

k |y(t−1)
j ), · · · , y(t)k from P (y

(t)
1 , · · · , y(t)k−1|y

(t−1)
k ).

4.3 Minimaxity and admissibility

Definition 1 (Minimax estimator): An estimator δ is minimax if supθ Rδ(θ) = infT supθ RT (θ).
Remark 1: A minimax estimator can be very conservative and unsatisfactory. It tries to do as

well as possible in the worst case. A unique minimax estimator is admissible, since any estimator
better than a minimax estimator is also minimax.

Theorem 1 (Minimaxity of a Bayes estimator): Let Π be a proper prior on Θ and δ be a Bayes
estimator of θ w.r.t. Π. Suppose δ has constant risk on ΘΠ. If Π(ΘΠ) = 1, then δ is minimax. If, in
addition, δ is the unique Bayes estimator w.r.t. Π, then it is the unique minimax estimator.

Theorem 2: Let Πj , j = 1, 2, · · · be a sequence of priors and rj be the Bayes risk of a Bayes
estimator of θ w.r.t. Πj . Let T be a constant risk estimator of θ. If lim infj rj ≥ RT , then T is
minimax.

Example 1: Let X1, · · · , Xn be i.i.d. components having the N (µ, σ2) distribution with an
known µ = θ ∈ R and a known σ2. If the prior is N (µ0, σ

2
0), then the posterior of θ given X = x

is N (µ∗(x), c
2) with µ∗(x) = σ2

nσ2
0+σ

2µ0 + nσ2
0

nσ2
0+σ

2 X̄ and c2 = σ2
0σ

2

nσ2
0+σ

2 . We now show that X̄ is
minimax under the squared error loss. For any decision rule T , supθ∈RRT (θ) ≥

∫
RRT (θ)dΠ(θ) ≥∫

RRµ∗(θ)dΠ(θ) = E{[θ − µ∗(X)]2} = E{E{[θ − µ∗(X)]2|X}} = E(c2) = c2. Since this result is true
for any σ2

0 > 0 and c2 → σ2/n as σ2
0 → ∞, supθ∈RRT (θ) ≥ σ2

n
= supθ∈RRX̄(θ) where the equality

holds because the risk of X̄ under the squared error loss is σ2/n and independent of θ = µ. Thus, X̄
is minimax.

Theorem 3: Let Θ0 be a subset of Θ and T be a minimax estimator of θ when Θ0 is the parameter
space. Then T is minimax estimator if supθ∈ΘRT (θ) = supθ∈Θ0

RT (θ).
Theorem 4 (Admissibility in one-parameter exponential families): Suppose that X has the p.d.f.

c(θ)h(x)eθT (x) w.r.t. a σ-finite measure ν, where T (x) is real-valued and θ ∈ (θ−, θ+) ⊂ R. Consider
the estimation of ϑ = E[T (X)] under the squared error loss. Let λ ≥ 0 and γ be known constants
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and let Tλ,γ(X) = (T + γλ)/(1 + λ). Then a sufficient condition for the admissibility of Tλ,γ is that∫ θ+
θ0

e−γλθ

[c(θ)]λ
dθ =

∫ θ0
θ−

e−γλθ

[c(θ)]λ
dθ = ∞, where θ0 ∈ (θ−, θ+).

Theorem 5: Suppose that T as an estimator of θ has constant risk and is admissible. Then T is
minimax. If the loss function is strictly convex, then T is the unique minimax estimator.

Theorem 6: Assume that X has the p.d.f. as described in Theorem 4 with θ− = −∞ and
θ+ = ∞. (i) As an estimator of ϑ = E(T ), T (X) is admissible under the squared error loss and the
loss (a− ϑ)2/Var(T ). (ii) T is the unique minimax estimator of ϑ under the loss (a− ϑ)2/Var(T ).

Example 2: Let X1, · · · , Xn be i.i.d. from N (0, σ2) with an unknown σ2 > 0 and let Y =∑n
i=1X

2
i . Consider the estimation of σ2. The risk of Y /(n+2) is a constant under the loss (a−σ2)2/σ4.

We now apply Theorem 4 to show that Y /(n+ 2) is admissible. Note that the joint p.d.f. of Xi’s is
of the form c(θ)eθT (x) with θ = −n/(4σ2), c(θ) = (−2θ/n)n/2, T (X) = 2Y /n, θ− = −∞ and θ+ = 0.
By Theorem 4, Tλ,γ = (T + γλ)/(1 + λ) is admissible under the squared error loss if, for some c > 0,∫ −c
−∞ e−γλθ(−2θ

n
)−nλ/2dθ =

∫ c
0
eγλθθ−nλ/2dθ = ∞. This means Tλ,γ is admissible if γ = 0 and λ = 2/n,

or if γ > 0 and λ ≥ 2/n. In particular, 2Y /(n+2) is admissible for estimating E(T ) = 2E(Y )/n = 2σ2,
under the squared error loss. It is easy to see that Y /(n + 2) is then an admissible estimator of σ2

under the squared error loss and the loss (a − σ2)2/σ4. Hence Y /(n + 2) is minimax under the loss
(a− σ2)2/σ4.

4.4 Simultaneous estimation and shrinkage estimators

Definition 1 (Simultaneous estimation): Estimation of a p-vector ϑ of parameters (functions of
θ) under the decision theory approach.

Remark 1 (Difference from estimating ϑ component-by-component): A single loss function
L(ϑ, a), instead of p loss functions.

Definition 2 (Squared error loss): A natural generalization of the squared error loss is L(θ, a) =
||a− θ||2 =

∑p
i=1(ai − θi)

2.
Definition 3 (James-Stein estimator): We start with the simple case where X is from Np(θ, Ip)

with an unknown θ ∈ Rp. James and Stein proposed the following class of estimators of θ having
smaller risks than X when the squared error loss is used and p ≥ 3: δc = X − p−2

||X−c||2 (X − c), where
c ∈ Rp is fixed and the choice of c is discussed later.

Definition 4 (Extended James-Stein estimators): For the purpose of generalizing the results
to more complicated situations, we consider the following extension of the James-Stein estimator:
δc,r = X − r(p−2)

||X−c||2 (X − c), where c ∈ Rp and r ∈ R are known.
Motivation 1 (Shrink the observation toward a given point c): Suppose it were thought a priori

likely, though not certain, that θ = c. Then we might first test a hypothesis H0 : θ = c and estimate
θ by c if H0 is accepted and by X otherwise. The best rejection region has the form ||X − c||2 > t

for some constant t > 0 so that we might estimate θ by I(t,∞)(||X − c||2)X + [1− I(t,∞)(||X − c||2)c].
δc,r is a smoothed version of this estimator, since, for some function ψ, δc,r = ψ(||X − c||2)X + [1−
ψ(||X − c||2)]c. Any estimator having this form is called a shrinkage estimator.

Motivation 2 (Empirical Bayes estimator): A Bayes estimator of θ is of the form δ = (1 −
B)X + Bc, where c is the prior mean of θ and B involves prior variances. 1 − B is “estimated” by
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ψ(||X − c||2). δc,r can be viewed as an empirical Bayes estimator.
Theorem 1 (Risks of shrinkage estimators): Suppose that X is from Np(θ, Ip) with p ≥ 3. Then,

under the squared error loss, the risks of the following shrinkage estimators of θ, δc,r = X− r(p−2)
||X−c||2 (X−

c), where c ∈ Rp and r ∈ R are known, are given by Rδc,r(θ) = p− (2r − r2)(p− 2)2E(||X − c||−2).
Remark 2: The risk of δc,r is smaller than p, the risk of X for every value of θ when p ≥ 3 and

0 < r < 2. δ = δc,1 is better than any δc,r with r ̸= 1.
Remark 3 (The improvement): To see that δc may have a substantial improvement over X in

terms of risks, consider the special case where θ = c. Since ||X − c||2 has the chi-square distribution
χ2
p when θ = c, E||X − c||−2 = (p− 2)−1 and Rδc,1(θ) = p− (2r − r2)(p− 1)2E(||X − c||−2) = 2. The

ratio RX(θ)/Rδc(θ) equals p = 2 when θ = c and can be larger than 1 near θ = c when p is large.
Remark 4 (Minimaxity and admissibility of δc). Since X is minimax, δc,r is minimax provided

that p ≥ 3 and 0 < r < 2. Unfortunately, the James-Stein estimator δc with any c is also inadmissible.
It is dominated by δ+c = X − min{1, p−2

||X−c||2 }(X − c). This estimator, however, is still inadmissible.
Although neither the James-Stein estimator δc nor δ+c is admissible, it is found that no substantial
improvements over δ+c are possible.

Definition 5 (Extension of Theorem 1 to Var(X) = σ2D): Consider the case where Var(X) = σ2D

with an unknown σ2 > 0 and a known positive definite matrix D. If σ2 is known, then an extended
James-Stein estimator is δ̃c,r = X − (p−2)rδ2

||D−1(X−c)||2D
−1(X − c). Under the squared error loss, the risk

of δ̃c,r is σ2[tr(D)− (2r − r2)(p− 2)2σ2E(||D−1(X − c)||−2)]. When σ2 is unknown, we assume that
there exists a statistic S2

0 such that S2
0 is independent of X and S2

0/σ
2 has the chi-square distribution

χ2
m. Replacing rσ2 in δ̃c,r by σ̂2 = tS2

0 with a constant t > 0 leads to the following extended
James-Stein estimator: δ̃c = X − (p−2)σ̂2

||D−1(X−c)||2D
−1(X − c). From the risk formula for δ̃c,r and the

independence of σ̂2 and X, the risk of δ̃c is Rδ̃c(θ) = σ2{tr(D)− [2tm− t2m(m+ 2)](p− 2)2σ2κ(θ)},
where θ = (θ, σ2) and κ(θ) = E(||D−1(X − c)||−2). Replacing t by 1/(m + 2) leads to Rδ̃c(θ) =

σ2[tr(D)−m(m+2)−1(p− 2)2σ2E(||D−1(X − c)||−2)], which is smaller than σ2tr(D) (the risk of X)
for any fixed θ, p ≥ 3.

Example 1: Consider the general linear model X = Zβ + ϵ with ϵ ∼ Np(0, σ
2), p ≥ 3, and a

full rank Z. Consider the estimation of θ = β under the squared error loss. The LSE β̂ is from
N (β, σ2D) with a known matrix D = (ZTZ)−1, S2

0 = SSR is independent of β̂, S2
0/σ

2 has the chi-
sqaure distribution χ2

n−p. Hence, from the previous discussion, the risk of the shrinkage estimator
β̂ − (p−2)σ̂2

||ZTZ(β̂−c)||2Z
TZ(β̂ − c) is smaller than that of β̂ for any β and σ2, where c ∈ Rp is fixed and

σ̂2 = SSR/(n− p+ 2)

Definition 6 (Other shinkage estimators): From the previous discussion, the James-Stein esti-
mators improve X substantially when we shrink the observations toward a vector c that is near
θ = EX. One may consider shrinking the observations toward the mean of the observations rather
than a given point; that is, one may obtain a shrinkage estimator by replacing c in δc,r by X̄Jp,
where X̄ = p−1

∑p
i=1Xi and Jp is the p-vectors of ones. However, we have to replace the fac-

tor p − 2 in δc,r by p − 3. This leads to shrinkage estimators X − p−3
||X−X̄Jp||2

(X − X̄Jp) and
X − (p−3)σ̂2

||D−1(X−X̄Jp)||2
D−1(X − X̄Jp). These estimators are better than X (and, hence, are minimax)

when p ≥ 4, under the squared error loss.
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4.5 Likelihood and maximum likelihood estimator (MLE)

Definition 1: Let X ∈ X be a sample with a p.d.f. fθ w.r.t. a σ-finite measure ν, where
θ ∈ Θ ⊂ Rk. (i) For each x ∈ X , fθ(x) considered as a function of θ is called the likelihood function
and denoted by l(θ). (ii) Let Θ̄ be the closure of Θ. A θ̂ ∈ Θ satisfying l(θ̂) = maxθ∈Θ l(θ) is called
a maximum likelihood estimate (MLE) of θ. If θ̂ is a Borel function of X a.e. ν, then θ̂ is called a
maximum likelihood estimator MLE of θ. (iii) Let g be a Borel function from Θ to Rp, p ≤ k. If θ̂ is
an MLE of θ, then ϑ̂ = g(θ̂) is defined to be an MLE of ϑ = g(θ).

Remark 1 (Finding an MLE): Since logx is a strictly increasing function, θ̂ is an MLE if and
only if it maximizes the log-likelihood function logl(θ). If l(θ) is differentiable on Θ◦, tthen possible
candidates for MLE’s are the values of θ ∈ Θ◦ satisfying ∂ log l(θ)

∂θ
= 0, which is called the likelihood

equation or log-likelihood equation.
Example 1: Let X1, · · · , Xn be i.i.d. binary random variables with P (X1 = 1) = p ∈ Θ = (0, 1).

When (X1, · · · , Xn) = (x1, · · · , xn) is observed, the likelihood function is l(p) =
∏n
i=1 p

xi(1−p)1−xi =

pnx̄(1− p)n(1−x̄), where x̄ = n−1
∑n

i=1 xi. Note that Θ̄ = [0, 1] and Θ◦ = Θ. The likelihood equation
is nx̄

p
− n(1−x̄)

1−p = 0. If 0 < x̄ < 1, then this equation has a unique solution x̄. The second-order
derivative of log l(p) is −nx̄

p2
− n(1−x̄)

(1−p)2 , which is always negative. Also, when p tends to 0 or 1 (the
boundary of Θ), l(p) → 0. Thus, x̄ is the unique MLE of p.

Definition 2 (The Newton-Raphson method): In applications, MLE’s typically do not have
analytic forms and some numerical methods have to be used to compute MLE’s. A commonly used
numerical method is the Newton-Raphson iteration method, which repeatedly computes θ̂(t+1) =

θ̂(t) − [∂
2 log l(θ)
∂θ∂θT

|θ=θ̂(t) ]−1 ∂ log l(θ)
∂θ

|θ=θ̂(t) , t = 0, 1, · · · , where θ̂(0) is an initial value and ∂2 log l(θ)/∂θ∂θT

is assumed of full rank for every θ ∈ Θ.
Definition 3 (The Fisher-scoring method): If, at each iteration, we replace [∂

2 log l(θ)
∂θ∂θT

|θ=θ̂(t) ]−1 by
[{E(∂

2 log l(θ)
∂θ∂θT

)}|θ=θ̂(t) ]−1, where the expectation is taken under Pθ, then the method is known as the
Fisher-scoring method.

4.6 Asymptotically efficient estimation

Definition 1 (Asymptotic comparison): Let {θ̂n} be a sequence of estimators of θ based on a
sequence of samples {X = (X1, · · · , Xn), n = 1, 2, · · · }. Suppose that as n→ ∞, θ̂n is asymptotically
normal (AN) in the sense that [Vn(θ)]

−1/2(θ̂n − θ) →d Nk(0, Ik), where, for each n, Vn(θ) is a
k × k positive definite matrix depending on θ. If θ is one-dimensional, then Vn(θ) is the asymptotic
variance as well as the amse of θ̂n. When k > 1, Vn(θ) is called the asymptotic covariance matrix
of θ̂n and can be used as a measure of asymptotic performance of estimators. If θ̂jn is AN with
asymptotic covariance matrix Vjn(θ), j = 1, 2, and V1n(θ) ≤ V2n(θ) for all θ ∈ Θ, then θ̂1n is said to
be asymptotically more efficient than θ̂2n.

Theorem 1: Let X1, · · · , Xn be i.i.d. from a p.d.f. fθ w.r.t. a σ-finite measure ν on (R,B),
where θ ∈ Θ and Θ is an open set in Rk. Suppose that for every x in the range of X1, fθ(x) is
twice continuously differentiable in θ and satisfies ∂

∂θ

∫
ψθ(x)dν =

∫
∂
∂θ
ψθ(x)dν for ψθ(x) = fθ(x)

and = ∂fθ(x)/∂θ; the Fisher information matrix I1(θ) = E{ ∂
∂θ

log fθ(X1)[
∂
∂θ

log fθ(X1)]
T } is positive
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definite; and for any given θ ∈ Θ, there exists a positive number cθ and a positive function hθ such
that E[hθ(X1)] < ∞ and supγ:||γ−θ||<cθ ||

∂2 log fγ(x)
∂γ∂γT || ≤ hθ(x) for all x in the range of X1, where

||A|| =
√

tr(ATA) for any matrix A. If θ̂n is an estimator of θ and is AN with Vn(θ) = V (θ)/n, then
there is a Θ0 ⊂ Θ with Lebesgue measure 0 such that the information inequality Vn(θ) ≥ [In(θ)]

−1

holds if θ ̸∈ Θ0.
Definition 2 (Asymptotic efficiency): Assume that the Fisher information matrix In(θ) is well

defined and positive definite for every n. A sequence of estimators {θ̂n} that is AN is said to be
asymptotically efficient or asymptotically optimal if and only if Vn(θ) = [In(θ)]

−1.
Remark 1 (Estimating a function of θ): Suppose that we are interested in estimating ϑ = g(θ),

where g is a differentiable function from Θ to Rp, 1 ≤ p ≤ k. If θ̂n is AN, then ϑ̂n = g(θ̂n) is
asymptotically distributed as Np(ϑ, [∇g(θ)]TVn(θ)∇g(θ)). Thus, the information inequality becomes
[∇g(θ)]TVn(θ)∇g(θ) ≥ [In(ϑ)]

−1, where In(ϑ) is the Fisher information matrix about ϑ contained
in X. If p = k and g is one-to-one, then [In(ϑ)]

−1 = [∇g(θ)]T [In(θ)]−1∇g(θ) and, therefore, ϑ̂n is
asymptotically efficient if and only if θ̂n is asymptotically efficient.

Theorem 2: Assume the conditions of Theorem 1. (i) Asymptotic existence and consistency.
There is a sequence of estimators {θ̂n} such that P (sn(θ̂n) = 0) → 1 and θ̂n →p θ, where sn(γ) =
∂ log l(γ)

∂γ
. (ii) Asymptotic efficiency. Any consistent sequence θ̃n of RLE(root of the likelihood equa-

tion)’s is asymptotically normal and asymptotically efficient.
Theorem 3: Assume the conditions of Theorem 1. Let π(γ) be a prior p.d.f w.r.t. the Lebesgue

measure on Θ and pn(γ) be the posterior p.d.f., given X1, · · · , Xn, n = 1, 2, · · · . Assume that
there exists an n0 such that pn0

(γ) is continuous and positive for all γ ∈ Θ,
∫
pn0

(γ)dγ = 1

and
∫
||γ||pn0

(γ)dγ < ∞. Suppose further that, for any ϵ > 0, there exists a δ > 0 such that
limn→∞ P (sup||γ−θ||≥ϵ

log l(γ)−log l(θ)
n

> −δ) = 0, limn→∞ P (sup||γ−θ||≤δ
||∇sn(γ)−∇sn(θ)||

n
≥ ϵ) = 0,

where l(γ) is the likelihood function and sn(γ) is the score function. (i) Let p∗n(γ) be the poste-
rior p.d.f of

√
n(γ − Tn), where Tn = θ + [In(θ)]

−1sn(θ) and θ is the true parameter value, and
let ψ(γ) be the p.d.f. of Nk(0, [I1(θ)]

−1). Then
∫
(1 + ||γ||)|p∗n(γ) − ψ(γ)|dγ →p 0. (ii) The Bayes

estimator of θ under the squared error loss is asymptotically efficient.
Proposition 1: The posterior p.d.f. is approximately normal with mean θ + [In(θ)]

−1sn(θ) and
covariance matrix [In(θ)]

−1.

4.7 MLE in generalized linear models (GLM) and quasi-MLE

Definition 1 (The structure of a GLM): The sample X = (X1, · · · , Xn) has independent Xi’s
and Xi has the p.d.f. exp{ηixi−ζ(ηi)

ϕi
}h(xi, ϕi), i = 1, · · · , n, w.r.t. a σ-finite measure ν, where ηi and

ϕi are unknown, ϕi > 0, ηi ∈ Ξ = {η : 0 <
∫
h(x, ϕ)eηx/ϕdν(x) <∞} ⊂ R for all i, ζ and h are known

functions, and ζ ′′(η) > 0 is assumed for all η ∈ Ξ◦. Note that the p.d.f. belongs to an exponential
family if ϕi is known. As a consequence, E(Xi) = ζ ′(ηi) and Var(Xi) = ϕiζ

′′(ηi), i = 1, · · · , n. Define
µ(η) = ζ ′(η). It is assumed that ηi is related to Zi, the ith value of a p-value of covariates, through
g(µ(ηi)) = βTZi, i = 1, · · · , n, where β is a p-vector of unknown parameters and g, called a link
function, is a known one-to-one, third-order continuously differentiable function on {µ(η) : η ∈ Ξ◦}.
If µ = g−1, then ηi = βTZi and g is called the canonical or natural link function. If g is not canonical,
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we assume that d
dη
(g ◦ µ)(η) ̸= 0 for all η. In a GLM, the parameter of interest is β. We assume the

range of β is B = {β : (g ◦ µ)−1(βT z) ∈ Ξ◦ for all z ∈ Z }, where Z is the range of Zi’s. ϕi’s are
called dispersion parameters and are considered to be nuisance parameters.

Proposition 1 (MLE in GLM): An MLE of β in a GLM is considered under assumption ϕi =

ϕ/ti, i = 1, · · · , n, with an unknown ϕ > 0 and known positive ti’s. Let θ = (β, ϕ) and ψ = (g ◦µ)−1.
log l(θ) =

∑n
i=1[logh(xi, ϕti )+

ψ(βTZi)xi−ζ(ψ(βTZi))
ϕ/ti

], ∂ log l(θ)
∂β

= 1
ϕ

∑n
i=1{[xi−µ(ψ(βTZi))]ψ′(βTZi)tiZi}

= 0, ∂ log l(θ)
∂ϕ

=
∑n

i=1{
∂ logh(xi,ϕ/ti)

∂ϕ
− ti[ψ(β

TZi)xi−ζ(ψ(βTZi))]
ϕ2 } = 0. From the first likelihood equation, an

MLE of β, if it exists, can be obtained without estimating ϕ. The second likelihood equation, however,
is usually difficult to solve. Some other estimators of ϕ are suggested by various researchers. Suppose
there is a solution β̂ to the likelihood equation. Var(∂ log l(θ)

∂β
) = Mn(β)

ϕ
, ∂

2 log l(θ)
∂β∂βT = Rn(β)−Mn(β)

ϕ
, where

Mn(β) =
∑n

i=1[ψ
′(βTZi)]

2ζ ′′(ψ(βTZi))tiZiZ
T
i , Rn(β) =

∑n
i=1[xi−µ(ψ(βTZi))]ψ′′(βTZi)tiZiZ

T
i . Con-

sider first the simple case of canonical g, ψ′′ = 0 and Rn = 0. If Mn(β) is positive definite for all
β, then − log l(θ) is strictly convex in β for any fixed ϕ and, therefore, β̂ is the unique MLE of β.
For noncanonical g, Rn(β) ̸= 0 and β̂ is not necessarily an MLE. If Rn(β) is dominated by Mn(β),
i.e., [Mn(β)]

−1/2Rn(β)[Mn(β)]
−1/2 → 0 in some sense, then − log l(θ) is convex and β̂ is an MLE for

large n. In a GLM, an MLE β̂ usually does not have an analytic form and a numerical method such
as the Newton-Raphson has to be applied.

Example 1: Consider the GLM with ζ(η) = η2/2, η ∈ R. If g is the canonical link, then the
model is the same as a linear model with independent ϵi’s distributed as N (0, ϕi). Suppose now
that g is noncanonical but ϕi ≡ ϕ. Then the model reduces to the one with independent Xi’s and
Xi = N (g−1(βTZi), ϕ), i = 1, · · · , n. This type of model is called a nonlinear regression model (with
normal errors) and an MLE of β under this model is also called a nonlinear LSE, since maximizing
the log-likelihood is equivalent to minimizing the sum of squares

∑n
i=1[Xi − g−1(βTZi)]

2. Under
certain conditions the matrix Rn(β) is dominated by Mn(β) and an MLE of β exists.

Example 2 (The Poisson model): Consider the GLM with ζ(η) = eη, η ∈ R, ϕi = ϕ/ti. If ϕi = 1,
then Xi has the Poisson distribution with mean eηi . Under the canonical link g(t) = log t,Mn(β) =∑n

i=1 e
βTZitiZiZ

T
i , which is positive definite if infi eβ

TZi > 0 and the matrix (
√
t1Z1, · · · ,

√
tnZn) is

of full rank. There is one noncanonical link that deserves attention. Suppose that we choose a link
function so that [ψ′(t)]2ζ ′′(ψ(t)) ≡ 1. Then Mn(β) =

∑n
i=1 tiZiZ

T
i does not depend on β. It is shown

that the asymptotic variance of the MLE β̂ is ϕ[Mn(β)]
−1. The fact that Mn(β) does not depend on

β makes the estimation of the asymptotic variance (and, thus, statistical inference) easy. Under the
Poisson model, ζ ′′(t) = et and, therefore, we need to solve the differentiable equation [ψ′(t)]2eψ(t) = 1.
A solution is ψ(t) = 2 log(t/2) and the link g(µ) = 2

√
µ.

Theorem 1: Consider the GLM with ϕi = ϕ/ti and ti’s in a fixed interval (t0, t∞), 0 < t0 ≤ t∞ <

∞. Assume that the range of unknown parameter β is an open subset of Rp; at the true value of β, 0 <
infi ϕ(βTZi) ≤ supi ϕ(βTZi) <∞, where ϕ(t) = [ψ′(t)]2ζ ′′(ψ(t)); as n→ ∞,maxi≤n ZTi (ZTZ)−1Zi →
0 and λ−[Z

TZ] → ∞, where Z is the n × p matrix whose ith row is the vector Zi and λ−[A] is the
smallest eigenvalue of A. (i) There is a unique sequence of estimators {β̂n} such that P (sn(β̂n) = 0) →
1 and β̂n →p β, where sn(β) = ∂ log l(β, ϕ)/∂ϕ is the score function. (ii) Let In(β) = Var(sn(β)).
Then [In(β)]

1/2(β̂n − β) →d Np(0, Ip). (iii) If ϕ is known or the p.d.f. indexed by θ = (β, ϕ) satisifies
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the conditions for fθ in Theorem 1 of section 4.6, then β̂n is asymptotically efficient.
Definition 2 (Quasi-MLE): If assumption ϕi is arbitrary, or the distribution assumption on Xi

does not hold, but E(Xi) = ζ ′(ηi),Var(Xi) = ϕiζ
′′(ηi), i = 1, · · · , n and g(µ(ηi)) = βTZi, i = 1, · · · , n

still hold, we estimate β by solving equation Gn(β) =
∑n

i=1{[xi−µ(ψ(βTZi))]ψ′(βTZi)tiZi} = 0, then
the resulting estimator is called a quasi-MLE. This method is also called the method of generalized
estimating equations (GEE). They are efficient if the GEE is a likelihood equation, and is robust if
it is not.

Remark 1: The asymptotic existence and consistency of quasi-MLE can be shown using a similar
argument to the proof of Theorem 2 of section 4.6.

4.8 Other asymptotically efficient estimators and pseudo MLE

Definition 1 (One-Step MLE): Let sn(γ) be the score function. Let θ̂(0)n be an estimator of θ that
may not be asymptotically efficient. The one-step MLE is the first iteration in computing an RLE
using the Newton-Raphson method with θ̂

(0)
n as the initial value, θ̂(1)n = θ̂

(0)
n − [∇sn(θ̂(0)n )]−1sn(θ̂

(0)
n ).

Without any further iteration, θ̂(1)n is asymptotically efficient under some conditions.
Theorem 1: Assume that the conditions in Theorem 1 of section 4.6 hold and that θ̂(0)n is

√
n-

consistent for θ. (i) The one-step MLE θ̂
(1)
n is asymptotically efficient. (ii) The one-step MLE obtained

by replacing ∇sn(γ) with its expected value, −In(γ) (the Fisher-scoring method), is asymptotically
efficient.

Definition 2 (Pseudo MLE): Let X1, · · · , Xn be a random sample from a pdf in a family indexed
by two parameters θ and π with likelihood l(θ, π). The method of pseudo MLE may be viewed as
follows. Based on the sample, an estimate π̂ of π is obtained using some technique other than MLE.
The pseudo MLE of θ is then obtained by maximizing the likelihood l(θ, π̂).

Remark 1: π is viewed as a nuisance parameter. Pseudo MLE consists of replacing π by an
estimate and solving a reduced system of likelihood equations, which works when a higher dimen-
sional MLE is intractable but a lower dimensional MLE is feasible. The consistency and asymptotic
normality hold under fairly standard regularity conditions.

Theorem 2 (Asymptotic existence and consistency of pseudo MLE): Assume the conditions in
Theorem 1 of section 4.6. Assume also π̂ is a consistent estimator of π0. As n→ ∞, with probability
tending to 1, there exists θ̂ such that ∂ log l(θ̂,π̂)

∂θ
= 0 and θ̂ →p θ0 where θ0 is the true value of θ.

5 Estimation in Non-Parametric Models

5.1 Empirical c.d.f. and empirical likelihoods

Definition 1 (Estimation in nonparametric models): Data X = (X1, · · · , Xn), where Xi’s are
random d-vectors i.i.d. from an unknown c.d.f. F in a nonparametric family. We study mainly two
topics: estimation of the c.d.f. F and estimation of θ = T (F ), where T is a functional.

Definition 2 (Empirical c.d.f.): Fn(t) = 1
n

∑n
i=1 I(−∞,t](Xi), t ∈ Rd, where (−∞, a] denotes the

set (−∞, a1]× · · · × (−∞, ad] for any a = (a1, · · · , ad) ∈ Rd.
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Proposition 1 (Properties of empirical c.d.f.): (i) For any t ∈ Rd, nFn(t) has the binomial
distribution B(F (t), n); (ii) Fn(t) is unbiased variance F (t)[1 − F (t)]/n; (iii) Fn(t) is the UMVUE
under some nonparametric models; (iv) Fn(t) is

√
n-consistent for F (t).

Theorem 1: Define sup-norm distance ρ∞(G1, G2) = ||G1−G2||∞ = supt∈Rd |G1(t)−G2(t)|, Gj ∈
F . (i) When d = 1, there exists a positive constant C (not depending on F ) such that P (ρ∞(Fn, F ) >

z) ≤ Ce−2nz2 , z > 0, n = 1, 2, · · · . (ii) When d ≥ 2, for any ϵ > 0, there exists a positive constant
Cϵ,d (not depending on F ) such that P (ρ∞(Fn, F ) > z) ≤ Cϵ,de

−(2−ϵ)nz2 , z > 0, n = 1, 2, · · · .
Theorem 2: Let Fn be the empirical c.d.f. of i.i.d. X1, · · · , Xn from a c.d.f. F on Rd. (i)

ρ∞(Fn, F ) →a.s. 0 as n→ ∞; (ii) E[
√
nρ∞(Fn, F )]

s = O(1) for any s > 0.
Theorem 3: Let Fn be the empirical c.d.f. based on i.i.d. random variables X1, · · · , Xn from

a c.d.f F ∈ F1. (i) ρLp
(Fn, F ) →a.s. 0; (ii) E[

√
nρLp

(Fn, F )] = O(1) if 1 < p < 2 and
∫
{F (t)[1 −

F (t)]}p/2dt <∞ if p ≥ 2.
Theorem 4: For X1, · · · , Xn i.i.d. from F ∈ F , the empirical c.d.f. Fn maximizes the nonpara-

metric likelihood function l(G) over G ∈ F .
Definition 3 (Empirical likelihoods): The nonparametric MLE can be extended to various sit-

uations with some modifications of l(G) and/or constraints on pi’s. Modifications of the likelihood
l(G) are called empirical likelihoods. An estimator obtained by maximizing an empirical likelihood
is then called a maximum empirical likelihood estimator (MELE).

Remark 1 (Estimation of F with auxiliary information about F ): In some cases we have some
information about F . For instance, suppose that there is a known Borel function u from Rd to Rs such
that

∫
u(x)dF = 0. It is reasonable to expect that any estimate F̂ of F has property

∫
u(x)dF̂ = 0,

which is not true for the empirical c.d.f Fn, since
∫
u(x)dFn = 1

n

∑n
i=1 u(Xi) ̸= 0 even if E[u(X1)] = 0.

Using the method of empirical likelihoods, a natural solution is to put another constraint in the process
of maximizing the likelihood. That is, we maximize l(G) subject to pi > 0, i = 1, · · · , n,

∑n
i=1 pi = 1,

and
∑n

i=1 piu(xi) = 0 where pi = PG({xi}). Using the Lagrange multiplier method, it can be shown
that an MELE of F is F̂ (t) =

∑n
i=1 p̂iI(−∞,t](Xi), where p̂i = n−1[1 + λTnu(Xi)]

−1, i = 1, · · · , n and
λn ∈ Rs is the Lagrange multiplier satisfying

∑n
i=1 p̂iu(Xi) =

1
n

∑n
i=1

u(Xi)
1+λT

nu(Xi)
= 0.

Theorem 5: Let u be a Borel function on Rd satisfying
∫
u(x)dF = 0 and F̂ be the MELE of F .

Suppose that U = Var(u(X1)) is positive definite. Then, for any m fixed distinct t1, · · · , tm ∈ Rd,
√
n[(F̂ (t1), · · · , F̂ (tm)) − (F (t1), · · · , F (tm))] →d Nm(0,Σu), where Σu = Σ −W TU−1W , Σ is the

covariance matrix of
√
n[(Fn(t1), · · · , Fn(tm)) − (F (t1), · · · , F (tm))],W = (W (t1), · · · ,W (tm)), and

W (tj) = E[u(X1)I(−∞,tj ](X1)].

5.2 Profile likelihoods, GEE, and GMM

Definition 1 (Profile likelihoods): Let l(θ, ξ) be a likelihood (or empirical likelihood), where
θ and ξ are not necessarily vector-valued. It mat be difficult to maximize the likelihood l(θ, ξ)

simultaneously over θ and ξ. For each fixed θ, let ξ(θ) satisfy l(θ, ξ(θ)) = supξ l(θ, ξ). The function
lp(θ) = l(θ, ξ(θ)) is called a profile likelihood function for θ. Suppose that θ̂p maximizes lp(θ). Then θ̂p
is called a maximum profile likelihood estimator of θ. Although this idea can be applied to parametric
models, it is more useful in semi-parametric models, especially when θ is a parametric component
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and ξ is a nonparametric component.
Example 1 (Missing data): Assume that X1, · · · , Xn are i.i.d. random variables from an unknown

c.d.f. F and some Xi’s are missing. Let δi = 1 if Xi is observed and δi = 0 if Xi is missing. Suppose
that (Xi, δi) are i.i.d. and let π(x) = P (δi = 1|Xi = x). If Xi and δi are independent, i.e. π(x) ≡ π

does not depend on x, then the empirical c.d.f based on observed data, i.e., the c.d.f. putting mass r−1

to each observed Xi, where r is the number of observed Xi’s, is an unbiased and consistent estimator
of F , provided that π > 0. On the other hand, if π(x) depends on x (called nonignorable missingness),
then the empirical c.d.f. based on observed data is a biased and inconsistent estimator of F . In fact,
the empirical c.d.f. based on observed data is an unbiased estimator of P (Xi ≤ x|δi = 1), which is
generally different from the unconditional probability F (x) = P (Xi ≤ x). If both π and F are in
parametric models, then we can apply the method of maximum likelihood. For example, if π(x) =
πθ(x) and F (x) = Fϑ(x) has a p.d.f. fθ, where θ and ϑ are vectors of unknown parameters, then a
parametric likelihood of (θ, ϑ) is l(θ, ϑ) =

∏n
i=1[πθ(xi)fθ(xi)]

δi(1−π)1−δi , where π =
∫
πθ(x)fϑ(x)dx.

computationally, it may be difficult to maximizing this likelihood, since π is an integral. Suppose
now that π(x) = πθ(x) is the parametric component and F is the nonparametric component. Then
an empirical likelihood can be defined as l(θ,G) =

∏n
i=1[πθ(xi)pi]

δi(1− π)1−δi , pi = PG({xi}) subject
to pi ≥ 0,

∑n
i=1 δipi = 1,

∑n
i=1 δipi[πθ(xi)− π] = 0, i = 1, · · · , n. It can be shown that the logarithm

of the profile empirical likelihood for (θ, π) with a Lagrange multiplier is
∑n

i=1{δi log(πθ(xi)) + (1−
δi) log(1−π)− δi log(1+λ[πθ(xi)−π])}. Under some conditions, it can be shown that the estimators
θ̂, π̂ and λ̂ obtained by maximizing this likelihood are consistent and asymptotically normal and that
the empirical c.d.f. putting mass p̂i = r−1{1+ λ̂[πθ̂(Xi)− π̂]}−1 to each observed Xi is consistent for
F . The result can be extended when there is an observed covariate.

Definition 2 (Generalized estimating equation (GEE)): Assume that X1, · · · , Xn are independent
random vectors, where the dimension of Xi is di, i = 1, · · · , n(supi di <∞), and that we are interested
in estimating θ, a k-vector of unknown parameters related to the unknown population. Let Θ ⊂ Rk be
the range of θ, ψi be a Borel function form Rdi×Θ to Rk, i = 1, · · · , n, and sn(γ) =

∑n
i=1 ψi(Xi, γ), γ ∈

Θ. If θ is estimated by θ̂ ∈ Θ satisfying sn(θ̂) = 0, then θ̂ is called a GEE estimator. The equation
sn(γ) = 0 is called a GEE.

Remark 1: Usually GEE’s are chosen so that E[sn(θ)] =
∑n

i=1 E[ψi(Xi, θ)] = 0, where the
expectation E may be replaced by an asymptotic expectation if the exact expectation does not exist.

Proposition 1 (Consistency of GEE estimators): Suppose that X1, · · · , Xn are i.i.d. from F and
ψi ≡ ψ, a bounded and continuous function form Rd ×Θ to Rk. Let g(t) =

∫
ψ(x, t)dF (x). Suppose

that g(θ) = 0 and ∂g(t)/∂t exists and is of full rank at t = θ. Then θ̂n →p θ.
Proposition 2 (Asymptotic normality of GEE estimators):

√
nV

−1/2
n (θ̂ − θ) →d N (0, Ik), where

sn(θ) =
∑n

i=1 ψi(Xi, θ) and Vn = [∇sn(θ)]−1Var(sn(θ))[∇sn(θ)]−1.
Definition 3 (Generalized method of moments (GMM)): Suppose that we have a set of m ≥

k functions ψj(x, θ), j = 1, · · · ,m such that Eθ[ψj(X, θ)] = 0 for all j and ψj ’s are not linearly
dependent, i.e., the m×m matrix whose (j, j′)th element is Eθ[ψj(Xi, θ)ψj′(Xi, θ)] is positive definite,
which can usually be achieved by eliminating some redundant functions where ψj ’s are linearly
dependent. Let Gn(θ) =

(
1
n

∑n
i=1 ψ1(xi, θ), · · · , 1

n

∑n
i=1 ψm(xi, θ)

)T
, θ ∈ Θ. If m = k, a solution to

31



HYPOTHESIS TESTS

Gn(θ) = 0 is a GEE estimator. If m > k, a solution to Gn(θ) = 0 may not exist. Then we can
minimize GTn (θ)Gn(θ), using a data driven procedure.

Definition 4 (GMM algorithm): A GMM estimate of θ can be obtained using the following two-
step algorithm (the second step is to gain efficiency). (1) Obtain θ̂(1) by minimizing GTn (θ)Gn(θ)/2
over θ ∈ Θ. (2) Let Ŵ be the inverse matrix of the m × m matrix whose (j, j′) element is equal
to 1

n

∑n
i=1 ψj(xi, θ̂

(1))ψj′(xi, θ̂
(1)). The GMM estimate θ̂ is obtained by minimizing GTn (θ)ŴGn(θ)/2

over θ ∈ Θ.
Proposition 3 (Asymptotic properties of GMM estimators):

√
n(θ̂n− θ) →d N (0, (BTΣ−1B)−1),

where G′
n(θ) →p B and Σ = Var(G(X1, θ)).

6 Hypothesis Tests

6.1 Neyman-Pearson lemma and monotone likelihood ratio

Definition 1 (Theory of testing hypotheses): X: a sample from a population P ∈ P . Based on
the observed X, we test a given hypothesis H0 : P ∈ P0 vs H1 : P ∈ P1 where P0 and P1 are two
disjoint subsets of P and P0 ∪P1 = P . A test for a hypothesis is a statistic T (X) taking values in
[0, 1]. When X = x is observed, we reject H0 with probability T (x). If T (X) = 1 or 0 a.s. P , then
T (X) is a nonrandomized test; otherwise T (X) is randomized. For a given test T (X), the power
function of T (X) is defined to be βT (P ) = E[T (X)], P ∈ P , which is the type I error probability of
T (X) when P ∈ P0 and one minus the type II error probability of T (X) when P ∈ P1.

Definition 2 (Significance tests): With a sample of a fixed size, we are not able to minimize two
error probabilities simultaneously. Our approach involves maximizing the power βT (P ) over all P ∈
P1 (i.e., minimizing the type II error probability) and over all tests T satisfying supP∈P0

βT (P ) ≤ α,
where α ∈ [0, 1] is a given level of significance. The left-hand side of the last expression is defined to
be the size of T .

Definition 3: A test T∗ of size α is a uniformly most powerful (UMP) test if and only if βT∗(P ) ≥
βT (P ) for all P ∈ P1 and T of level α.

Proposition 1 (Using sufficient statistics): If U(X) is a sufficient statistic for P ∈ P , then for
any test T (X), E(T |U) has the same power function as T and, therefore, to find a UMP test we may
consider tests that re functions of U only.

Theorem 1 (Neyman-Pearson lemma): Suppose that P0 = {P0} and P1 = {P1}. Let fj be the
p.d.f of Pj w.r.t. a σ-finite measure ν (e.g., ν = P0 + P1), j = 0, 1. (i) Existence of a UMP test. For

every α, there exists a UMP test of size α, which is T∗(X) =


1 f1(X) > cf0(X)

γ f1(X) = cf0(X)

0 f1(X) < cf0(X)

where γ ∈ [0, 1]

and c ≥ 0 are some constants chosen so that E[T∗(X)] = α when P = P0 (c = ∞ is allowed). (ii)

Uniqueness. If T∗∗ is a UMP test of size α, then T∗∗(X) =

 1 f1(X) > cf0(X)

0 f1(X) < cf0(X)
a.s. P .

Example 1: Suppose that X is a sample of size 1, P0 = {P0}, and P1 = {P1}, where P0
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is N (0, 1) and P1 is the double exponential distribution DE(0, 2) with the p.d.f 4−1e−|x|/2. Since
P (f1(X) = cf0(X)) = 0, there is a unique nonrandomized UMP test. By theorem 1, the UMP test
T∗(x) = 1 if and only if π

8
ex

2−|x| > c2 for some c > 0, which is equivalent to |x| > t or |x| < 1− t for
some t > 1

2
. Suppose that α < 1

3
. To determine t, we use α = E0[T∗(X)] = P0(|X| > t) + P0(|X| <

1− t). If t ≤ 1, then P0(|X| > t) ≥ P0(|X| > 1) = 0.3374 > α. Hence t should be larger than 1 and
α = P0(|X| > t) = Φ(−t) + 1− Φ(t). Thus, t = Φ−1(1− α/2) and T∗(X) = I(t,∞)(|X|). Note that it
is not necessary to find out what c is.

Theorem 2: Suppose that there is a test T∗ of size α such that for every P1 ∈ P1, T∗ is UMP
for testing H0 versus the hypothesis P = P1. Then T∗ is the UMP for testing H0 versus H1.

Definition 4: Suppose that the distribution of X is in P = {Pθ : θ ∈ Θ}, a parametric family
indexed by a real-valued θ, and that P is dominated by a σ-finite measure ν. Let fθ = dPθ/dν. The
family P is said to have monotone likelihood ration in Y (X) (a real-valued statistic) if and only if,
for any θ1 < θ2, fθ2(x)/fθ1(x) is a nondecreasing function of Y (x) for values x at which at least one
of fθ1(x) and fθ2(x) is positive.

Example 2: Let θ be real-valued and η(θ) be a nondecreasing function of θ. Then the one-
parameter exponential family with fθ(x) = exp{η(θ)Y (x)−ξ(θ)}h(x) has monotone likelihood ration
in Y (X).

Theorem 3: Suppose that X has a distribution in P = {Pθ : θ ∈ Θ}(Θ ⊂ R) that has monotone
likelihood ratio in Y (X). Consider the problem of testing H0 : θ ≤ θ0 versus H1 : θ > θ0, where θ0 is

a given constant. (i) There exists a UMP test of size α, which is given by T∗(X) =


1 Y (X) > c

γ Y (X) = c

0 Y (X) < c

where c and γ are determined by βT∗(θ0) = α, and βT (θ) = E[T (X)] is the power function of a test
T . (ii) βT∗(θ) is strictly increasing for all θ’s for which 0 < βT∗(θ) < 1. (iii) For any θ < θ0, T∗

minimizes βT (θ) among all tests T satisfying βT (θ0) = α. (iv) Assume that Pθ(fθ(X) = cfθ0(X)) = 0

for any θ > θ0 and c ≥ 0, where fθ is the p.d.f. of Pθ. If T is a test with βT (θ0) = βT∗(θ0), then for
any θ > θ0, either βT (θ) < βT∗(θ) or T = T∗ a.s. Pθ. (v) For any fixed θ1, T∗ is UMP for testing
H0 : θ ≤ θ1 versus H1 : θ > θ1, with size βT∗(θ1).

Theorem 4 (One-parameter exponential families): Suppose that X has a p.d.f. in a one-
parameter exponential family with η being a strictly monotone function of θ. If η is increasing,
then T∗ given by Theorem 3 is UMP for testing H0 : θ ≤ θ0 versus H1 : θ > θ0, where γ and c are
determined by βT∗(0) = α. If η is decreasing or H0 : θ ≥ θ0(H1 : θ < θ0), the result is still valid by
reversing inequalities in the definition of T∗.

6.2 UMP tests and unbiased tests

Theorem 1: Suppose that the distribution of X is in a parametric family P indexed by a real-
valued θ and that P has monotone likelihood ratio in Y (X). If ψ is a nondecreasing function of Y ,
then g(θ) = E[ψ(Y )] is a nondecreasing function of θ.

Proposition 1 (Generalized Neyman-Pearson lemma): Let f1, · · · , fm+1 be Borel functions on
Rp integrable w.r.t. a σ-finite ν. For given constants t1, · · · , tm, let T be the class of Borel

33



HYPOTHESIS TESTS

functions ϕ (from Rp → [0, 1]) satisfying
∫
ϕfidν ≤ ti, i = 1, · · · ,m, and T0 be the set of ϕ’s

in T satisfying
∫
ϕfidν = ti, i = 1, · · · ,m. If there are constants c1, · · · , cm such that ϕ∗(x) = 1 fm+1(x) > c1f1(x) + · · ·+ cmfm(x)

0 fm+1(x) < c1f1(x) + · · ·+ cmfm(x)
is a member of I0, then ϕ∗ maximizes

∫
ϕfm+1dν over

ϕ ∈ T0. If ci ≥ 0 for all i, then ϕ∗ maximizes
∫
ϕfm+1dν over ϕ ∈ T .

Theorem 2: Let f1, · · · , fm and ν be given by Proposition 1. Then the setM = {(
∫
ϕf1dν, · · · ,

∫
ϕfmdν) :

ϕ is from Rp → [0, 1]} is convex and closed. If (t1, · · · , tm) is an interior point of M , then there exist
constant c1, · · · , cm such that the function ϕ∗ defined in Proposition 1 is in T0.

Definition 1 (Two-sided hypotheses): The following hypotheses are called two-sided hypotheses:
H0 : θ ≤ θ1 or θ ≥ θ2 versus H1 : θ1 < θ < θ2, H0 : θ1 ≤ θ ≤ θ2 versus H1 : θ < θ1 or θ > θ2,
H0 : θ = θ0 versus H1 : θ ̸= θ0, where θ0, θ1, θ2 are given constants and θ1 < θ2.

Theorem 3 (UMP tests for two-sided hypotheses): Suppose that X has a p.d.f in a one-parameter
exponential family, i.e., the p.d.f is fθ(x) = exp{η(θ)Y (x) − ξ(θ)}h(x) w.r.t. a σ-finite measure,
where η is a strictly increasing function of θ. (i) For testing hypotheses H0 : θ ≤ θ1 or θ ≥ θ2

versus H1 : θ1 < θ < θ2, a UMP test of size α is T∗(x) =


1 c1 < Y (X) < c2

γi Y (X) = ci, i = 1, 2,

0 Y (X) < c1 or Y (X) > c2

, where

ci’s and γi’s are determined by βT∗(θ1) = βT∗(θ2) = α. (ii) T∗ minimizes βT (θ) over all θ < θ1, θ >

θ2, and T satisfying βT (θ1) = βT (θ2) = α. (iii) If T∗ and T∗∗ are two tests satisfying T (x) =
1 c1 < Y (X) < c2

γi Y (X) = ci, i = 1, 2,

0 Y (X) < c1 or Y (X) > c2

and βT∗(θ1) = βT∗∗(θ1) and if the region {T∗∗ = 1} is to the right

of {T∗ = 1}, then βT∗(θ1) < βT∗∗(θ) for θ > θ1 and βT∗(θ) > βT∗∗(θ) for θ < θ1. If both T∗ and T∗∗

satisfy T (x) =


1 c1 < Y (X) < c2

γi Y (X) = ci, i = 1, 2,

0 Y (X) < c1 or Y (X) > c2

and βT∗(θ1) = βT∗(θ2) = α, then T∗ = T∗∗ a.s. P .

Example 1: Let X1, · · · , Xn be i.i.d. from N (θ, 1). By Theorem 3, a UMP test for testing
H0 : θ ≤ θ1 or θ ≥ θ2 versus H1 : θ1 < θ < θ2 is T∗(X) = I(c1,c2)(X̄), where ci’s are determined by
Φ(

√
n(c2 − θ1))− Φ(

√
n(c1 − θ1)) = α and Φ(

√
n(c2 − θ2))− Φ(

√
n(c2 − θ2)) = α.

Remark 1 (Nonexistence of UMP tests): Unfortunately, a UMP test does not exist in general for
testing hypotheses H0 : θ1 ≤ θ ≤ θ2 versus H1 : θ < θ1 or θ > θ2, H0 : θ = θ0 versus H1 : θ ̸= θ0.

Definition 2: Let α be a given level of significance. A test T for H0 : P ∈ P0 versus P ∈ P1 is
said to be unbiased of level α if and only if βT (P ) ≤ α, P ∈ P0 and βT (P ) ≥ α, P ∈ P1. A test of
size α is called a uniformly most powerful unbiased (UMPU) test if and only if it is UMP within the
class of unbiased tests of level α.

Definition 3 (Similarity): Consider the hypotheses H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1. Let α be a given
level of significance and let Θ̄01 be the common boundary of Θ0 and Θ1, i.e., the set of points θ that
are points or limit points of both Θ0 and Θ1. A test T is similar on Θ̄01 if and only if βT (P ) = α for
all θ ∈ Θ̄01.
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Remark 2: It is more convenient to work with similarity than to work with unbiasedness for
testing H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1.

Theorem 4: Consider hypotheses H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1. Suppose that, for every T , βT (P )
is continuous in θ. If T∗ is uniformly most powerful among all similar tests and has size α, then T∗

is a UMPU test.

6.3 Likelihood ratio and asymptotic tests

Definition 1: Let l(θ) = fθ(X) be the likelihood function. For testing H0 : θ ∈ Θ0 versus
H1 : θ ∈ Θ1, a likelihood ratio (LR) test is any test that rejects H0 if and only if λ(X) < c, where
c ∈ [0, 1] and λ(X) is the likelihood ratio defined by λ(X) = supθ∈Θ0

l(θ)/ supθ∈Θ l(θ).
Remark 1 (Optimality): When a UMP or UMPU test exists, an LR test is often the same as

this optimal test.
Proposition 1: Suppose that X has a p.d.f. in one-parameter exponential family: fθ(x) =

exp{η(θ)Y (x)−ξ(θ)}h(x) w.r.t. a σ-finite measure ν, where η is a strictly increasing and differentiable
function of θ. (i) For testing H0 : θ ≤ θ0 versus H1 : θ > θ0, there is an LR test whose rejection region
is the same as that of the UMP test T∗. (ii) For testing H0 : θ ≤ θ1 or θ ≥ θ2 versus H1 : θ1 < θ < θ2,
there is an LR test whose rejection is the same as that of the UMP test T∗. (iii) For testing the
other two-sided hypotheses, there is an LR test whose rejection region is equivalent to Y (X) < c1 or
Y (X) > c2 for some constants c1 and c2.

Example 1: Consider the testing problem H0 : θ = θ0 versus H1 : θ ̸= θ0 based on i.i.d.
X1, · · · , Xn from the uniform distribution U(0, θ). We now show that the UMP test with rejection
region X(n) > θ0 or X(n) ≤ θ0α

1/n is an LR test. Note that l(θ) = θ−nI(X(n),∞)(θ). Hence λ(X) = (X(n)/θ0)
n X(n) ≤ θ0

0 X(n) > θ0
and λ(X) < c is equivalent to X(n) > θ0 or X(n)/θ0 < c1/n. Taking c = α

ensures that the LR test has size α.
Definition 2 (Asymptotic tests): Let X = (X1, · · · , Xn) be a sample from P ∈ P and Tn(X) be

a test for H0 : P ∈ P0 versus H1 : P ∈ P1. (i) If lim supn αTn
(P ) ≤ α for any P ∈ P0, then α is

an asymptotic significance level of Tn. (ii) If limn→∞ supP∈P0
αTn

(P ) exists, it is called the limiting
size of Tn. (iii) Tn is consistent iff the type II error probability converges to 0.

Remark 2: If P0 is not a parametric family, the limiting size of Tn may be 1. This is the reason
why we consider the weaker requirement in (i).

Definition 3: If α ∈ (0, 1) is pre-assigned level of significance for the problem, then a consistent
test Tn having an asymptotic significance level α is called asymptotically correct, and a consistent
test having limiting size α is called strongly asymptotically correct.

Theorem 1 (Asymptotic distribution of likelihood ratio): Assume the conditions of Theorem 1
in section 4.6. Suppose that H0 : θ = g(ϑ), where ϑ is (k − r)-vector of unknown parameters and
g is a continuously differentiable function from Rk−r to Rk with a full rank ∂g(ϑ)/∂ϑ. Under H0,
−2 logλn →d χ

2
r, where λn = λ(X) and χ2

r is a random variable having the chi-square distribution
χ2
r. Consequently, the LR test with rejection region λn < e−χ

2
r,α/2 has asymptotic significance level

α, where χ2
r,α is the (1− α)th quantile of the chi-square distribution χ2

r.
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Theorem 2: Assume the conditions of Theorem 1 in section 4.6. R(θ) is a continuously differen-
tiable function from Rk to Rr, θ̂ is an MLE or RLE of θ, θ̃ is an MLE or RLE of θ under H0 : R(θ) = 0.
(i) Under H0 : R(θ) = 0, Wald’s test Wn := [R(θ̂)]T {[C(θ̂)]T [In(θ̂)]−1C(θ̂)}−1R(θ̂) →d χ

2
r where

C(θ) = ∂R(θ)/∂θ. Therefore, the test rejects H0 if and only if Wn > χ2
r,α has asymptotic significance

level α, where χ2
r,α is the (1−α)th quantile of the chi-square distribution χ2

r. (ii) The result in (i) still
holds if Wn is replaced by Rao’s score test Rn := [sn(θ̃)]

T [In(θ̃)]
−1sn(θ̃) where sn(θ) = ∂ log l(θ)/∂θ.

6.4 Asymptotic chi-square tests

Definition 1 (Testing in multinomial distributions): Consider n independent trials with k possible
outcomes for each trial. Let pj > 0 be the probability that the jth outcome occurs in a given trial
and Xj be the number of occurrences of the jth outcome in n trials. Then X = (X1, · · · , Xk) has the
multinomial distribution with the parameter p = (p1, · · · , pk). Let ξi = (0, · · · , 0, 1, 0, · · · , 0), where
the single nonzero component 1 is located in the jth position if the ith trial yields the jth outcome.
Then ξ1, · · · , ξn are i.i.d. and X/n = ξ̄ =

∑n
i=1 ξi/n. X/n is an unbiased estimator of p and by the

CLT, Zn(p) =
√
n(X

n
− p) =

√
n(ξ̄ − p) →d Nk(0,Σ), where Σ = Var(X/

√
n) is a symmetric k × k

matrix whose ith diagonal element is pi(1 − pi) and (i, j)th off-diagonal element is −pipj . We first
consider the problem of testing H0 : p = p0 versus H1 : p ̸= p0 where p0 = (p01, · · · , p0k) is a known
vector of cell probabilities.

Definition 2 (χ2 tests): For testing H0 : p = p0 vs H1 : p ̸= p0, a class of tests related to the
asymptotic tests, a popular test is based on the following χ2-statistic: χ2 =

∑k
j=1

(Xj−np0j)2
np0j

=

||D(p0)Zn(p0)||2, where D(c) with c = (c1, · · · , ck) is the k × k diagonal matrix whose jth di-
agonal element is c

−1/2
j . Another popular test is based on the following modified χ2-statistic:

χ̃2 =
∑k

j=1
(Xj−np0j)2

Xj
= ||D(X/n)Zn(p0)||2.

Theorem 1: Let ϕ = (
√
p1, · · · ,

√
pk) and Λ be a k × k projection matrix. (i) If Λϕ = aϕ, then

[Zn(p)]
TD(p)ΛD(p)Zn(p) →d χ

2
r, where χ2

r has the chi-square distribution χ2
r with r = tr(Λ)−a. (ii)

The same result holds if D(p) in (i) is replaced by D(X/n).
Example 1 (Goodness of fit tests): Let Y1, · · · , Yn be i.i.d. from F . Consider the problem of

testing H0 : F = F0 versus H1 : F ̸= F0, where F0 is a known c.d.f. One way to test H0 : F = F0 is
to partition the range of Y1 into k disjoint events A1, · · · , Ak and test H0 : p = p0 with pj = PF (Aj)

and p0j = PF0
(Aj), j = 1, · · · , k. Let Xj be the number of Yi’s in Aj , j = 1, · · · , k. Based on Xj ’s,

the χ2-tests discussed previously can be applied.
Definition 3 (Generalized χ2-statistics): The generalized χ2-statistics χ2 and χ̃2 are defined to

be the previously defined χ2-statistics with p0j ’s replaced by pj(θ̂)’s, where θ ∈ Θ ⊂ Rs(s < k) and
θ̂ is an MLE of θ under H0.

Theorem 2: Under H0 : p = p(θ), the generalized χ2-statistics converge in distribution to χ2
k−s−1.

Definition 4 (Testing independence): Testing independence of {Aj : j = 1, · · · , c} and {Bi, i =
1, · · · , r} is equivalent to testing hypotheses H0 : pij = pi·p·j for all i, j versus H1 : pij ̸= pi·p·j for some
i, j, where pij = P (Aj∩Bi) = E[Xij ]/n, pi· = P (Bi) and pj = P (A·j), i = 1, · · · , r, j = 1, · · · , c. Under
H0, MLE’s of pi· and p·j are X̄i· = ni/n and X̄·jmj/n, respectively, i = 1, · · · , r, j = 1, · · · , c. The
number of free parameters is rc−1. Under H0, the number of free parameters is r−1+c−1 = r+c−2.
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The differnece of the two is (r− 1)(c− 1). Then the χ2-test rejects H0 when χ2 > χ2
(r−1)(c−1),α where

χ2 =
∑r

i=1

∑c
i=1

(Xij−nX̄i·X̄·j)
2

nX̄i·X̄·j
and χ2

(r−1)(c−1),α is the (1−α)th quantile of the chi-square distribution
of χ2

(r−1)(c−1).
Remark 1 (Construction of asymptotic tests): A simple method of constructing asymptotic tests

(for almost all problems, parametric or nonparametric) for testing H0 : θ = θ0 versus H1 : θ ̸= θ0,
where θ is a vector of parameters, is to use an asymptotically normally distributed estimator θ. Let
θ̂n be an estimator of θ based on a sample size n from P . Suppose that under H0, V −1/2

n (θ̂n − θ) →d

Nk(0, Ik), where Vn is the asymptotic covariance matrix of θ̂n. If Vn is known when θ = θ0, then we
define a test with rejection region (θ̂n− θ0)TV −1

n (θ̂n− θ0) > χ2
k,α, where χ2

k,α is the (1−α)th quantile
of the chi-squared distribution χ2

k. If Vn depends on the unknown population P even if H0 is true
(θ = θ0), then we have to replace Vn by an estimator V̂n. If V̂n is consistent, then the resulting test
still has asymptotic significance level α.

Theorem 3: Assume that V −1/2
n (θ̂n − θ) →d Nk(0, Ik), holds for any P . Assume also that

λ+[Vn] → 0, where λ+[Vn] is the largest eigenvalue of Vn. (i) The test having rejection region
(θ̂n − θ0)

TV −1
n (θ̂n − θ0) > χ2

k,α with a known Vn (or with Vn replaced by a consistent estimator V̂n)
is consistent. (ii) If we choose α = αn → 0 as n → ∞ and χ2

k,1−αn
λ+[Vn] = o(1), then the test in (i)

is Chernoff-consistent.

7 Confidence Sets

7.1 Pivotal quantities and confidence sets

Definition 1 (Confidence sets): X: a sample from a population P ∈ P . θ = θ(P ): a functional
from P to Θ ⊂ Rk for a fixed interger k. C(X): a confidence set for θ, a set in BΘ depending
only on X. The confidence coefficient of C(X) : infP∈P P (θ ∈ C(X)). If the confidence coefficient of
C(X) is ≥ 1− α for fixed α ∈ (0, 1), then we say that C(X) has confidence level 1− α or C(X) is a
level 1− α confidence set.

Definition 2: A known Borel function h of (X, θ) is called a pivotal quantity if and only if the
distribution of h(X, θ) does not depend on P .

Construction: First, find two constants c1 and c2 such that P (c1 ≤ h(x, θ) ≤ c2) ≥ 1− α. Next,
define C(X) = {θ ∈ Θ : c1 ≤ h(X, θ) ≤ c2}. Then C(X) is a level 1−α confidence set. The confidence
coefficient of C(X) may not be 1−α. If h(X, θ) has a continuous c.d.f., then we can choose ci’s such
that the equality in the last expression holds and the confidence set C(X) has confidence coefficient
1− α.

Computation: When h(X, θ) and ci’s are chosen, we need to compute the confidence set C(X) =

{c1 ≤ h(X, θ) ≤ c2}. This can be done by inverting c1 ≤ h(X, θ) ≤ c2. For example, if θ is real-
valued and h(X, θ) is monotone in θ when X is fixed, then C(X) = {θ : θ(X) ≤ θ ≤ θ(X)} for some
θ(X) < θ(X), i.e., C(X) is an interval (finite or infinite). If h(X, θ) is not monotone, then C(X) may
be a union of several intervals.

Example 1 (Location-scale families): Suppose that X1, · · · , Xn are i.i.d. with a Lebesgue p.d.f.
1
σ
f(x−µ

σ
), where µ ∈ R, σ > 0, and f is a known Lebesgue p.d.f. Consider first the case where σ is
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known and θ = µ. X̄ −µ is a pivotal quantity. Let c1 and c2 be constants such that P (c1 ≤ X̄ −µ ≤
c2) = 1− α, then C(X) = {µ : X̄ − c2 ≤ µ ≤ X̄ − c1}. Consider next the case where µ is known and
θ = σ. S/σ is a pivotal quantity, where S2 is the sample variance. Let c1 and c2 be chosen such that
P (c1 ≤ S/σ ≤ c2) = 1− α. If both ci’s are positive, then C(X) = {σ : S/c2 ≤ σS/c1} = [S/c2, S/c1]

is a finite interval. Similarily, if c1 = 0 or c2 = ∞, then C(X) = [S/c2,∞) or (0, S/c1]. When
θ = σ and µ is also known, S/σ is still a pivotal quantity and, hence, confidence intervals of σ
based on S are still valid. Finally, we consider the case where both µ and σ are unknown and
θ = µ. There are still many different pivotal quantities, but the most commonly used pivotal
quantity is t(X) =

√
n(X̄ − µ)/S. The distribution of t(X) does not depend on (µ, σ). When f

is normal, t(X) has the t-distribution tn−1. A confidence interval for µ based on t(X) is of the
form {µ : c1 ≤

√
n(X̄ − µ)/S ≤ c2} = [X̄ − c2S/

√
n, X̄ − c2S/

√
n], where ci’s are chosen so that

P (c1 ≤ t(X) ≤ c2) = 1− α.
Example 2: Let X1, · · · , Xn be i.i.d. random variables from the uniform distribution U(0, θ).

Consider the problem of finding a confidence set for θ. Note that X(n)/θ has the Lebesgue p.d.f.
nxn−1I(0,1)(x). Hence ci’s should satisfy cn2 − cn1 = 1 − α. The resulting confidence interval for θ is
[c−1

2 X(n), c
−1
1 X(n)].

Proposition 1 (Existence of pivotal quantities in parametric problems): Let T (X) = (T1(X), · · · , Ts(X))

and T1, · · · , Ts be independent statistics. Suppose that each Ti has a continuous c.d.f. FTi,θ indexed
by θ. Then h(X, θ) =

∏s
i=1 FTi,θ(Ti(X)) is a pivotal quantity.

Theorem 1: Suppose that P is in a parametric family indexed by a real-valued θ. Let T (X)

be a real-valued statistic with c.d.f. FT,θ(t) and let α1 and α2 be fixed positive constants such that
α1+α2 = α < 1

2
. (i) Suppose that FT,θ(t) and FT,θ(t−) are nonincreasing in θ for each fixed t. Define

θ = sup{θ : FT,θ(T ) ≥ α1} and θ = inf{θ : FT,θ(T−) ≤ 1 − α2}. Then [θ(T ), θ(T )] is a level 1 − α

confidence interval for θ. (ii) If FT,θ(t) and FT,θ(t−) are nondecreasing in θ for each t, then the same
result holds with θ = inf{θ : FT,θ(T ) ≥ α1} and θ = sup{θ : FT,θ(T−) ≤ 1 − α2}. (iii) If FT,θ is a
continuous c.d.f. for any θ, then FT,θ(T ) is a pivotal quantity and the confidence interval in (i) or
(ii) has confidence coefficient 1− α.

Definition 3 (Asymptotic criterion): In some problems, especially in nonparametric problems, it
is difficult to find a reasonable confidence set with a given confidence coefficient or confidence level
1−α. A common approach is to find a confidence set whose confidence coefficient or confidence level
is nearly 1−α when the sampel size n is large. A confidence set C(X) for θ has asymptotic confidence
level 1− α if lim infn P (θ ∈ C(X)) ≥ 1− α for any P ∈ P . If limn→∞ P (θ ∈ C(X)) = 1− α for any
P ∈ P , then C(X) is a 1− α asymptotically correct confidence set.

Definition 4 (Asymptotically pivotal quantities): A known Borel function of (X, θ), hn(X, θ), is
said to be asymptotically pivotal iff the limiting distribution of hn(X, θ) does not depend on P . Like a
pivotal quantity in constructing confidence sets with a given confidence coefficient or confidence level,
an asymptotically pivotal quantity can be used in constructing asymptotically correct confidence sets.

Example 3 (Functions of means): Suppose that X1, · · · , Xn are i.i.d. random vectors having
a c.d.f. F on Rd and that the unknown parameter of interest θ = g(µ), where µ = E(X1) and
g is a known differentiable function from Rd to Rk, k ≤ d. From the CLT, θ̂n = g(X̄) satisifies
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V
−1/2
n (θ̂n−θ) →d Nk(0, Ik), Vn = [∇g(µ)]TVar(X1)∇g(µ)/n. A consistent estimator of the asymptotic

covariance matrix Vn is V̂n = [∇g(X̄)]TS2∇g(X̄)/n. Thus, C(X) = {θ : ||V̂ −1/2
n (θ̂n − θ)||2 ≤ χ2

k,α},
is a 1− α asymptotically correct confidence set for θ.

7.2 Inverting acceptance regions of tests, UMA and UMAU confidence sets

Remark 1 (Confidence sets and hypothesis tests): Another popular method of constructing
confidence sets is to use a close relationship between confidence sets and hypothesis tests. For any
test T , the set {x : T (x) ̸= 1} is called the acceptance region. This terminology is not precise when
T is a randomized test.

Theorem 1: For each θ0 ∈ Θ, let Tθ0 be a test for H0 : θ = θ0 with significance level α and
acceptance region A(θ0). For each x in the range of X, define C(x) = {θ : x ∈ A(θ)}. Then C(X)

is a level 1− α confidence set for θ. If Tθ0 is nonrandomized and has size α for every θ0, then C(X)

has confidence coefficient 1− α.
Proposition 1: Let C(X) be a confidence set for θ with confidence level 1− α. For any θ0 ∈ Θ,

define a region A(θ0) = {x : θ0 ∈ C(x)}. Then the test T (X) = 1− IA(θ0)(X) has significance level α
for testing H0 : θ = θ0 versus some H1.

Example 1: Suppose that X has the following p.d.f. in a one-parameter exponential family:
fθ(x) = exp{η(θ)Y (x) − ξ(θ)}h(x), where θ is real-valued and η(θ) is nondecreasing in θ. Consider
H0 : θ = θ0 and H1 : θ > θ0. The acceptance region of the UMP test of size α is A(θ0) = {x : Y (x) ≤
c(θ0)}. It can be shown that c(θ) is nondecreasing in θ. Inverting A(θ), we obtain C(X) = [θ(X),∞)

or (θ(X),∞), a one-sided confidence interval for θ with confidence level 1−α. θ(X) is a called a lower
confidence bound for θ. If H0 : θ = θ0 and H1 : θ < θ0 are considered, then C(X) = {θ : Y (X) ≥ c(θ)}
and is of the form (−∞, θ(X)] or (−∞, θ(X)). θ(X) is called an upper confidence bound for θ.

Remark 2 (Confidence sets related to optimal tests): For a confidence set obtained by inverting
the acceptance regions of some UMP or UMPU tests, it is expected that the confidence set inherits
some optimality property.

Definition 1: Let θ ∈ Θ be an unknown parameter and Θ′ be a subset of Θ that does not contain
the true parameter value θ. A confidence set C(X) for θ with confidence coefficient 1 − α is said
to be Θ′-uniformly most accurate iff for any other confidence set C1(X) with confidence level 1− α,
P (θ′ ∈ C(X)) ≤ P (θ′ ∈ C1(X)) for all θ′ ∈ Θ′. C(X) is UMA iff it is Θ′-UMA with Θ′ = {θ}c.

Theorem 2: Let C(X) be a confidence set for θ obtained by inverting the acceptance regions of
nonrandomized tests Tθ0 for testing H0 : θ = θ0 versus H1 : θ ∈ Θθ0 . Suppose that for each θ0, Tθ0 is
UMP of size α. Then C(X) is Θ′-UMA with confidence coefficient 1− α, where Θ′ = {θ′ : θ ∈ Θθ′}.

Definition 2: Let θ ∈ Θ be an unknown parameter, Θ′ be a subset of Θ that does not contain
the true parameter value θ, and 1 − α be a given confidence level. (i) A level 1 − α confidence
set C(X) is said to be Θ′-unbiased (unbiased when Θ′ = {θ}c) iff P (θ′ ∈ C(X)) ≤ 1 − α for
all θ′ ∈ Θ′. (ii) Let C(X) be a Θ′-unbiased confidence set with confidence coefficient 1 − α. If
P (θ′ ∈ C(X)) ≤ P (θ′ ∈ C1(X)) for all θ′ ∈ Θ′ holds for any other Θ′-unbiased confidence set C1(X)

with confidence level 1 − α, then C(X) is Θ′-uniformly most accurate unbiased (UMAU). C(X) is
UMAU if and only if it is Θ′-UMAU with Θ′ = {θ}c.
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Theorem 3: Let C(X) be a confidence set for θ obtained by inverting the acceptance regions of
nonrandomized tests Tθ0 for testing H0 : θ = θ0 versus H1 : θ ∈ Θθ0 . If Tθ0 is unbiased of size α for
each θ0, then C(X) is Θ′-unbiased with confidence coefficient 1−α, where Θ′ = {θ′ : θ ∈ Θθ′}. If Tθ0
is also UMPU for each θ0, then C(X) is Θ′-UMAU.

Definition 3: Consider a sample X from a populationn in a parametric family dominated by a
σ-finite measure. Let fθ(x) be the p.d.f. of X and π(θ) be a prior p.d.f. w.r.t. a σ-finite measure λ
on (Θ,BΘ). Let px(θ) = fθ(x)π(θ)/m(x) be the posterior p.d.f. w.r.t. λ, where x is the observed X

and m(x) =
∫
Θ
fθ(x)π(θ)dλ. For any α ∈ (0, 1), a level 1− α credible set for θ is any C ∈ BΘ with

Pθ|x(θ ∈ C) =
∫
C
px(θ)dλ ≥ 1 − α. A level 1 − α highest posterior density (HPD) credible set for θ

is defined to be the event C(x) = {θ : px(θ) ≥ cα}, where cα is chosen so that
∫
C(x)

px(θ)dλ ≥ 1− α.
Example 2: Let X1, · · · , Xn be i.i.d. as N (θ, σ2) with an unknown θ ∈ R and a known

σ2. Let π(θ) be the p.d.f. of N (µ0, σ
2
0) with known µ0 and σ2

0 . Then px(θ) is the p.d.f. of
N (µ∗(x), c

2), where µ∗(x) = σ2

nσ2
0+σ

2µ0 + nσ2
0

nσ2
0+σ

2 x̄ and c2 = σ2
0σ

2

nσ2
0+σ

2 , and the HPD credible set is
C(x) = {θ : e−[θ−µ∗(x)]

2/(2c2) ≥ cα
√
2πc} = {θ : |θ − µ∗(x)| ≤

√
2c[− log(cα

√
2πc)]1/2}. Let Φ be the

standard normal c.d.f. The quantity
√
2c[− log(cα

√
2πc)]1/2 must be cz1−α/2, where zα = Φ−1(a),

since it is chosen so that Pθ|x(C(x)) = 1 − α and Pθ|x = N (µ∗(x), c
2). Therefore, C(x) = [µ∗(x) −

cz1−α/2, µ∗(x) + cz1−α/2].

7.3 Lengths and expected lengths of confidence intervals

Remark 1 (Length criterion): For confidence intervals of a real-valued � with the same confidence
coefficient, an apparent measure of their performance is the interval length. Shorter confidence
intervals are preferred, since they are more informative. When confidence intervals are constructed
by using pivotal quantities or by inverting acceptance regions of tests, choosing a reasonable class of
confidence intervals amounts to selecting good pivotal quantities or tests.

Theorem 1: Let θ be a real-valued parameter and T (X) be a real-valued statistic. (i) Let U(X)

be a positive statistic. Suppose that (T − θ)/U is a pivotal quantity having a Lebesgue p.d.f. f that
is unimodal at x0 ∈ R in the sense that f(x) is nondecreasing for x ≤ x0 and f(x) is nonincreasing
for x ≥ x0. Consider the following class of confidence intervals for θ: C = {[T − bU, T − aU ] : a ∈
R, b ∈ R,

∫ b
a
f(x)dx = 1− α}. If [T − b∗U, T − a∗U ] ∈ C , f(a∗) = f(b∗) > 0, and a∗ ≤ x0 ≤ b∗, then

the interval [T − b∗U, T − a∗U ] has the shortest length within C . (ii) Suppose that T > 0, θ > 0, T/θ
is a pivotal quantity having a Lebesgue p.d.f. f , and that x2f(x) is unimodal at x0. Consider the
following class of confidence intervals for θ: C = {[b−1T, a−1T ] : a > 0, b > 0,

∫ b
a
f(x)dx = 1 − α}.

If [b−1
∗ T, a−1

∗ T ] ∈ C , a2∗f(a∗) = b2f(b∗) > 0, and a∗ ≤ x0 ≤ b∗, then the interval [b−∗ T, a−1
∗ T ] has the

shortest length within C .
Example 1: Let X1, · · · , Xn be i.i.d. from N (µ, σ2) with unknown µ and σ2. Confidence intervals

for θ = µ using the pivotal quantity
√
n(X̄ − µ)/S form the class C in Theorem 1(i) with f being

the p.d.f. of the t-distribution tn−1, which is unimodal at x0 = 0. Since f is symmetric about 0,
f(a∗) = f(b∗) implies a∗ = −b∗. Therefore, the equal-tail confidence interval [X̄− tn−1,α/2S/

√
n, X̄+

tn−1,α/2S/
√
n] has the shortest length within C . If θ = µ and σ2 is known, then we replace S by σ

and f by the standard normal p.d.f. The resulting confidence interval is [X̄−Φ−1(1−α/2)σ/
√
n, X̄+
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Φ−1(1−α/2)σ/
√
n], which is the shortest interval of the form [X̄−b, X̄−a] with confidence coefficient

1− α. Consider next confidence intervals for θ = σ2 using the pivotal quantity (n− 1)S2/σ2, which
form the class C in Theorem 1(ii) with f being the p.d.f. of the chi-square distribution χ2

n−1.
Note that x2f(x) is unimodal, but not symmetric. By Theorem 1(ii), the shortest-length interval
within C is [b−1

∗ (n − 1)S2, a−1
∗ (n − 1)S2], where a∗ and b∗ are solutions of a2∗f(a∗) = b2∗f(b∗) and∫ b∗

a∗
f(x)dx = 1 − α. Numerical values of a∗ and b∗ can be obtained. Note that this interval is not

equal-tail.
Remark 2 (Expected length): In a problem where a shortest-length confidence interval does not

exist, we may have to use the expected length as the criterion in comparing confidence intervals.
Theorem 2 (Pratt’s theorem): Let X be a sample from P and C(X) be a confidence set for

θ ∈ Rk. Suppose that vol(C(x)) =
∫
C(X)

dθ′ is finite a.s. P . Then the expected volume of C(X) is
E[vol(C(X))] =

∫
θ ̸=θ′ P (θ

′ ∈ C(X))dθ′.
Remark 3: It follows from Theorem 2 that if C(X) is UMA (or UMAU) with confidence coefficient

1−α, then it has the smallest expected volume among all confidence sets (or all unbiased confidence
sets) with confidence level 1− α.

7.4 Asymptotic confidence sets

Definition 1: Let X = (X1, · · · , Xn) be a sample from P ∈ P , θ be a k-vector of parameters
related to P , and C(X) be a confidence set for θ. (i) If lim infn P (θ ∈ C(X)) ≥ 1−α for any P ∈ P ,
then 1 − α is an asymptotic significance level of C(X). (ii) If limn→∞ infP∈P P (θ ∈ C(X)) exists,
then it is called the limiting confidence coefficient of C(X). (iii) If limn→∞ P (θ ∈ C(X)) = 1− α for
any P ∈ P , then C(X) is a 1− α asymptotically correct confidence set.

Proposition 1: Let Cj(X) = {θ : ||V̂ −1/2
jn (θ̂jn − θ)||2 ≤ χ2

k,α}, j = 1, 2, be the confidence sets
based on θ̂jn satisfying V

−1/2
jn (θ̂jn − θ) →d Nk(0, Ik), where V̂jn is consistent for Vjn, j = 1, 2. If

det(V1n) < det(V2n) for sufficiently large n, then P (vol(C1(X)) < vol(C2(X))) → 1.
Example 1 (Parametric likelihoods): Consider the case where P = {Pθ : θ ∈ Θ} is a parametric

family dominated by a σ-finite measure, where Θ ⊂ Rk. Consider θ = (ϑ, φ) and confidence sets
for ϑ with dimension r. Let l(θ) be the likelihood function based on the observation X = x. The
acceptance region of the LR test with Θ0 = {θ : ϑ = ϑ0} is A(ϑ0) = {x : l(ϑ0, φ̂ϑ0

) ≥ e−cα/2l(θ̂)},
where l(θ̂) = supθ∈Θ l(θ), l(ϑ, φ̂ϑ) = supφ l(ϑ, φ), and cα is a constant related to the significance
level α. If cα is chosen to be χ2

r,α, the (1 − α)th quantile of the chi-square distribution χ2
r, then

C(X) = {ϑ : l(ϑ, φ̂ϑ) ≥ e−cα/2l(θ̂)} is a 1 − α asymptotically correct confidence set. Note that
this confidence set and the one given by C(X) = {θ : ||V̂ −1/2

n (θ̂n − θ)||2 ≤ χ2
k,α} are generally

different. In many cases −l(ϑ, φ) is a convex function of ϑ and, therefore, C(X) based on LR tests
is a bounded set in Rk. When Θ0 = {θ : ϑ = ϑ0}, Wald’s test has acceptance region A(ϑ0) = {x :

(ϑ̂ − ϑ0)
T {CT [In(θ̂)]−1C}−1(ϑ̂ − ϑ0) ≤ χ2

r,α}, where θ̂ = (ϑ̂, φ̂) is an MLE or RLE of θ = (ϑ, φ),
In(θ) is the Fisher information matrix based on X, CT = (Ir0), and 0 is an r × (k − r) matrix of
0’s. The confidence set obtained by inverting A(ϑ) is C(X) = {θ : ||V̂ −1/2

n (ϑ̂ − ϑ)||2 ≤ χ2
k,α} with

V̂n = CT [In(θ̂)]
−1C. When Θ0 = {θ : ϑ = ϑ0}, Rao’s score test has acceptance region A(ϑ0) =

{x : [sn(ϑ0, φ̂ϑ0
)]T [In(ϑ0, φ̂ϑ0

)]−1sn(ϑ0, φ̂ϑ0
) ≤ χ2

r,α}, where sn(θ) = ∂ log l(θ)/∂θ. The confidence set
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obtained by inverting A(ϑ) is also 1− α asymptotically correct.
Remark 1 (Confidence intervals for quantiles): Let X1, · · · , Xn be i.i.d. from a continuous c.d.f.

F on R and let θ = F−1(p) be the pth quantile of F , 0 < p < 1. The general methods can be applied
to obtain a confidence set for θ, but we introduce here a method that works particularly for quantile
problems.

Theorem 1 (Refinement of Bahadur’s representation): Let X1, · · · , Xn be i.i.d. from a continuous
c.d.f. F on R that is twice differentiable at θ = F−1(p), 0 < p < 1, with F ′(θ) > 0. Let Fn be the
empirical c.d.f. Let {kn} be a sequence of interges satisfying 1 ≤ kn ≤ n and kn/n = p+o((logn)δ/

√
n)

for some δ > 0. Then X(kn) = θ + (kn/n)−Fn(θ)
F ′(θ)

+O( (logn)(1+δ)/2

n3/4 ) a.s.
Theorem 2: Assume the conditions in Theorem 1 and kn/n = p + cn−1/2 + o(n−1/2) with a

constant c. Then
√
n(X(kn) − F−1

n (p)) →a.s. c/F
′(θ).

Theorem 3: Assume the conditions in Theorem 1. Let {k1n} and {k2n} be two sequences of
integers satisfying 1 ≤ k1n < k2n ≤ n, k1n/n = p − z1−α/2

√
p(1− p)/n + o(n−1/2), and k2n/n =

p + z1−α/2
√
p(1− p)/n + o(n−1/2), where za = Φ−1(a). Then th confidence interval C(X) =

[X(k1n), X(k2n)] has the property that P (θ ∈ C(X)) does not depend on P and limn→∞ infP∈P P (θ ∈

C(X)) = limn→∞ P (θ ∈ C(X)) = 1− α. Furthermore, the length of C(X) =
2z1−α/2

√
p(1−p)

F ′(θ)
√
n

+ o( 1√
n
)

a.s.

7.5 Variance estimation, replication, jackknife, and bootstrap

Motivation: To evaluate and compare different estimators, we need consistent estimators of
variances or asymptotic variances of estimators. Traditional approach to estimate Var(θ̂): Derivation
and substitution. (i) First, we derive a theoretical formula; (ii) Approximation (asymptotic theory)
is usually needed; (iii) The formula may depend on unknown quantities; (iv) We then substitute
unknown quantities by estimators.

Method 1 (The δ-method): Y1, · · · , Yn are i.i.d.(k-dimensional). θ = g(µ), θ̂ = g(Ȳ ),Var(θ̂) ≈
[∇g(µ)]TVar(Ȳ )[∇g(µ)]. An estimator of Var(θ̂) is V̂n = [∇g(Ȳ )]T (S2/n)∇g(Ȳ ).

Method 2: Suppose we can independently obtain B copies of the data set X, say X1, · · · , XB.
Then we can calculate θ̂b = θ̂(Xb), b = 1, · · · , B. Variance of θ̂ can be estimated as 1

B

∑B
b=1(θ̂

b −
1
B

∑B
l=1 θ̂

l)2. No derivation is needed.
Definition 1 (Jackknife): Consider pseudo replicates Xi = (X1, · · · , Xi−1, Xi+1, · · · , Xn), i =

1, · · · , n. Let θ̂−i be the same estimator as θ̂n but based on Xi, i = 1, · · · , n. Since θ̂n and θ̂−1, · · · , θ̂−n
estimate the ame quantity, the following “sample variance” can be used as a measure of the variation of
θ̂n: 1

n−1

∑n
i=1(θ̂−i−θ̄n)2, θ̄n = 1

n

∑n
i=1 θ̂−i. If θ̂n = X̄ is the sample mean, θ̂−i−θ̄n = (n−1)−1(X̄−Xi)

and 1
n−1

∑n
i=1(θ̂−i−θ̄n)2 =

S2

(n−1)2
. Thus, the correcttion factor (n−1)2/n should be multiplied, which

leads to the jackknife variance estimator of Var(θ̂n): V̂J = n−1
n

∑n
i=1(θ̂−i − θ̄n)

2.
Theorem 1: Let X1, · · · , Xn be i.i.d. random d-vectors from F with finite µ = E(X1) and

Var(X1), and let θ̂n = g(X̄). Suppose that ∇g is continuous at µ and ∇g(µ) ̸= 0. Then the jackknife
variance estimator V̂J is strongly consistent for Var(θ̂n).

Definition 2 (Bootstrap): Create bootstrap pseudo-replicate datasets X∗1, · · · , X∗B randomly
generated from X. Let θ̂∗b be the same as an estimator θ̂ but based on X∗b, b = 1, · · · , B. Is
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1
B

∑B
b=1(θ̂

b − 1
B

∑B
l=1 θ̂

l)2 still a valid estimator of Var(θ̂)? In fact, the cdf G(t) = P (θ̂ − θ ≤ t) can
be estimated as 1

B

∑B
b=1 I(θ̂

∗b − θ̂ ≤ t) = # of b’s such that θ̂∗b−θ̂≤t
B

.
Remark 1 (A heuristic description for the bootstrap): P : the population producing data X.

P̂ : an estimated of the population based on data X. X∗: the bootstrap data produced by P . Real
world: P ⇒ X ⇒ θ̂ = θ̂(X). Bootstrap: P̂ ⇒ X∗ ⇒ θ̂∗ = θ̂(X∗). If P̂ is close to P , then Ĝ(t) is
close to G(t) and Var∗(θ̂∗) is close to Var(θ̂).

Definition 3 (Parametric bootstrap): Let X1, · · · , Xn be i.i.d. with a c.d.f. Fθ where θ is an
unknown parameter vector and Fθ is known when θ is known. Let θ̂ be an estimator of θ based on
X = (X1, · · · , Xn). Parametric bootstrap data set X∗ = (X∗

1 , · · · , X∗
n) is obtained by generating

i.i.d. X∗
1 , · · · , X∗

n from Fθ̂.
Example 1 (Location-scale problems): Let Fθ(x) = F0(

x−µ
σ

), where µ = E(X1), σ
2 = Var(X1)

and F0 is a known cdf. Let X̄ be the sample mean, S2 be the sample variance, and T =
√
n(X̄−µ)
S

=
√
n
∑n

i=1
Xi−µ
S

. The distribution of T does not depend on any parameter. Let θ̂ = (X̄, S2) generate
i.i.d. X∗

i , i = 1, · · · , n from Fθ̂. Then (X∗
i − X̄)/S ∼ F0, T

∗ =
√
n
∑n

i=1
X∗b

i −X̄
S

∼ T .
Definition 4 (Nonparametric bootstrap): Without any model, we can apply the simple nonpara-

metric bootstrap. If X = (X1, · · · , Xn), X1, · · · , Xn are i.i.d., then P is the cdf of X1 and P̂ is the
empirical cdf based on X1, · · · , Xn. If we generate i.i.d. bootstrap data X∗

1 , · · · , X∗
n from P̂ , then it

is the same as taking a simple random sample with replacement from X.
Proposition 1 (Property of Var∗(θ̂∗)): Consider the estimation of g(µ), where µ = E(X1) and

g is a continuously differentiable function. Our estimator is θ̂ = g(X̄). The bootstrap analog is
θ̂∗ = g(X̄∗). When n is large, g(X̄∗) ≈ g(X̄) + ∇g(X̄)(X̄∗ − X̄), and Var∗(θ̂∗) = Var[g(X̄∗)] ≈
∇g(X̄)Var(X̄∗ − X̄)∇g(X̄)T ≈ n−1

n2 ∇g(X̄)S2∇g(X̄)T .

7.6 Bootstrap confidence intervals

Remark 1: We want to find limits θ and θ such that P (θ ≤ θ) = P (θ ≤ θ) = 1− α. Traditional
asymptotic approach is G(t) → Φ(t/σ), n→ ∞ where Φ is the standard normal cdf, σ is an unknown
scale parameter. Let σ̂ be a consistent estimator of σ, then G(σ̂t) → Φ(t). Normal approximation
100(1− α)% confidence limits are θN = θ̂ − σ̂z1−α/

√
n, θN = θ̂ + σ̂z1−α/

√
n.

Definition 1 (Hybrid bootstrap): A bootstrap estimator of G(t) = P (
√
n(θ̂ − θ) ≤ t) is Ĝ(t) =

P∗(
√
n(θ̂∗ − θ̂) ≤ t). G−1(1 − α) can be estimated by Ĝ−1(1 − α). HB lower and upper confidence

limits: θHB = θ̂ − Ĝ−1(1− α)/
√
n, θHB = θ̂ − Ĝ−1(α)/

√
n.

Definition 2 (Bootstrap-t): G(t) = P (
√
n(θ̂ − θ) ≤ t) = Φ(t/σ). σ̂: a consistent estimator of σ.

ThenH(t) = P (
√
n(θ̂−θ)/σ̂ ≤ t) → Φ(t). A bootstrap estimator ofH(t): Ĥ(t) = P∗(

√
n(θ̂∗−θ̂)/σ̂∗ ≤

t). BT lower and upper confidence limits: θBT = θ̂− σ̂Ĥ−1(1− α)/
√
n, θBT = θ̂+ σ̂Ĥ−1(1− α)/

√
n.

Definition 3 (Bootstrap percentile): Bootstrap distribution (histogram): K(t) = P∗(θ̂
∗ ≤ t) ≈

1
B
(# of times θ̂∗b ≤ t). 100(1 − α)% BP lower confidence limit θBP = K−1(α) = inf{t : K(t) ≤ α},

i.e., θBP ≈ αBth ordered valued of θ̂∗1, · · · , θ̂∗B. 100(1 − α)% BP upper confidence limit θBP =

K−1(1− α) = inf{t : K(t) ≥ 1− α}, i.e., θBP ≈ (1− α)Bth ordered value of θ̂∗1, · · · , θ̂∗B.
Assumption 1: There is a monotone transformation ϕ such that P (ϕ̂−ϕ ≤ t) = Ψ(t) for all t and

all P (including P = P∗), where ϕ = ϕ(θ), ϕ̂ = ϕ(θ̂) and Ψ is a continuous, increasing cdf symmetric
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about 0.
Theorem 1: If ϕ is known, then θE = ϕ−1(ϕ̂ + zα), zα = Ψ−1(α) is an exact 100(1 − α)% lower

confidence bound, i.e., P (θE ≤ θ) = 1− α. Under assumption 1, θBP = θE .
Assumption 2: There is a monotone transformation ϕ and a constant z0 such that P (ϕ̂−ϕ+z0 ≤

t) = Ψ(t) for all t and all P (including P = P∗), where Ψ is a continuous, increasing cdf symmetric
about 0 and z0 is a constant that may depend on P and n.

Theorem 2: θE = ϕ−1(ϕ̂+ zα + z0) is an exact 100(1− α)% lower confidence limit for θ. Under
assumption 2, the bootstrap bias-corrected percentile θBC := K−1(Ψ(zα + 2z0)) = K−1(Ψ(zα +

2Ψ−1(K(θ̂)))) = θE .
Assumption 3: There is a monotone transformation ϕ and constants z0 and a (acceleration

constant) such that P ( ϕ̂−ϕ
1+aϕ

+ z0 ≤ t) = Ψ(t) for all t and all P (including P = P∗), where Ψ is a
continuous, increasing cdf symmetric about 0.

Theorem 3: θE = ϕ−1(ϕ̂+ (zα+z0)(1+aϕ̂)
1−a(zα+z0)

) is an exact 1−−(1− α)% lower confidence limit for θ.
Under assumption 3, if a is known, the BCa lower confidence bound θBCa

= K−1(Ψ(z0+
zα+z0

1−a(zα+z0)
)) =

θE .
Definition 4 (Asymptotic accuarcy): A confidence set C is first order accurate if P (θ ∈ C) =

1− α+O(n−1/2) and second order accurate if P (θ ∈ C) = 1− α+O(n−1).
Theorem 5: For the case of θ̂ is a smooth function of sample means, we have shown the following

summary: (i) The BY and bootstrap BCa one-sided confidence intervals are second order accuratel.
(ii) The BP, BC, HB, and NA one-sided confidence intervals are in general first order accurate. (iii)
The equal-tail two-sided confidence intervals produced by all five bootstrap methods and the normal
approximation are second order accurate (errors cancel each other).
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