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INTRODUCTION

1 Introduction

e What’s ML?
Computational and statistical methods using experience/data to improve performance in various
learning tasks, make accurate prediction or estimate inference. Related: SL, DL, AI, DM, Big

Data, Data Science.

o References
1) The Elements of Statistical Learning: Data Mining, Inference, and Prediction.

2) Foundations of Machine Learning.

e Learning tasks

Supervised: class & regression
How data are labeled ¢ Unsupervised: clustering, dim reduct, GM, ranking
Semisupervised: labeled 4+ unlabeled

Batch/Offline
How data arrive

Online
o Terminology
Sample: set of sample points(examples/instances)
iid. X = (21, - ,z,) ~ D". Repeated patterns.
Relaxed: transfer learning & federated learning.
Usually, z; € RP(feature/statistics), y; € {0, 1} (labels/outcomes).
Hypothesis/parameters: functions mapping x; to y;, y = f(z,0) + €
Hyperparameters/tuning parameters: free parameters of learning algorithms.
Simplified: Data — Algorithm(Hyperparameters) — Hypothesis — Predict.
Realistic: put samples into 3 parts: training, validation and test. Using traning samples to train
algorithm and produce hypothesis, but hypothesis depends on hyperparameters, so we use validation

samples to choose the best hyperparameters.
e Loss function: £:y x4y — Rs, eg. L(y,y)=1(y#y') or (y —y')>

o Performance guarantees: generalization/predict, stability /robustness, explainablity/interpretabil-

ity, computability /scalability

e Occam’s razor: Among hypotheses equally consistent(taking noise into account) with data, simpler

is better.

e No-free-lunch thm: Learning is impossible without prior knowledge.
Proof: Consider the test error: L(A|S, f) (A = algorithm, S = training sample, f = ground truth) =
2o 2wexns P(@)I(h(z) # f(x))P (R[S, A). For binary classification, f,h € F = {f : X — {0,1}}
where | F| = 2/*l. Assume all fs are equally possible, so 2 LCAIS ) =32 200 Xenns P(@)I(h(z)
£ F@)PHIS,A) = Xyenns P@) S POIS, A) S, 1(h(z) £ f(@)) = 2X171 5, s Ple). Here,
we find alogorithm A is no longer related.
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2 PAC/Nonasymptotic Framework

o In statistics, asymptotic includes consistency (én — 6y a.s. as n — oo0) and asymptotic normal-
ity (distribution) (v7n(, — 6y) — N(0,%)) and its probability tools include LLNs and CLTs.
Nonasymptotic includes error bounds with high probability and its probability tools include con-
centrating inequalities, large dimension bounds and empirical processes. In ML, PAC refers to
Probably Approximately Correct = nonasymptotic + algorithm complexity.

Chernoff bounds: X, -, X, € {(g, 1}, u=E(>, X;). Then Va > 0,

M B

PO X, > (1 +a)u) < e~ 2) PO X, <(Ql—a)u) < 67%2-

e PAC framework
Concept ¢ € C : X — Y is true parameter, and hypothesis h € H is your estimation. Sample
S = (x1,--+ ,xy,) with labels (¢(x),- - ,c¢(z,,)). Obtain hg.
Generalization error/risk R(h) = Py.p(h(x) # c(z)) = Eppl(h(x) # c(x)).
Empirical error Rg(h) = LS I(h(x;) # c(x;)). Note that Rg(h) is an unbiased estimater of
R(h).
Def: A concept class C' is PAC-learnable if 3 algorithm A & polynomial function (-,-,-,-) s.t. Ve >
0,6 > 0,distribution D on X ,target concept ¢, it holds that VYm > poly(1/e, 1/, n,size(c)), Pspm
(R(hs) <€) >1—6. If Arunsin poly(1/e,1/§,n,size(c)) then efficiently PAC-learnable.
Computational costs: n: representation of z € X. size(c): representation of ¢ € C. They are
usually dependent on dim(X’). That is, sample + time + space.
Example: X € R*,C = {[l,r] x [b,t]|l,r,b,t € R}, true concept R € C,Rg € C returned by the
algorithm: tighted rectangle combining all points labeled 1.
Fix € > 0, if € > P(R), trivially, R(Rs) < P(R) < e. Otherwise, assume € < P(R). Find rectangles
1,72, 73,74 along the sides of R and P(r;) > €/4, P(7;(excluding inner side)) < ¢/4. If Rg intersects
all r;5, then R(Rg) = P(R\Rs) < 4 x (¢/4) = e. Thus, Ps.pm(R(Rs) > ¢) < St P(RgNr; =
0) < 4(1 — ¢/4)™ < 4e=™/%. For m yields m > 2log. Computation costs O(1), time comlexity
o(m).
Remark: Generlization bound: with probability > 1 — 8, R(Rs) < -tlog3, i.e. O(:). Why the

sharp rate? H = C' is too simple!

¢ Finite hypothesis sets
Consistent case: Assume A returns hg s.t. 7A25(h5) =0.
Thm: Ve,§ > 0, the inequality Ps.p(R(hs) <€) > 1— 6 holds if m > 1(log|#| + log(
probability > 1 — 8, R(hs) < = (log(|H| + log(3)).
Proof: Ve > 0, define H, = {h € H : R(h) > ¢}. Then Vh € H., P(Rg(h) = 0) < (1 — €)™. By the
union bound, P(3h € H, s.t. Rs(h) = 0) < > hen. P(Rg(h) = 0) < [He|(1 — €)™ < [H|e ™. Set
RHS = § and solve for m.
Example: C,, = (zj, A---Axj, : k <n). eg. n=4,c(x) =z ATy Azy. Consider the algorithm:
for (by,--- ,b,) labeled +, rule out Z; if b; = 1, rule out z; if b; = 0. Also, |H| = |C,,| = 3™. Sample
complexity m > L(nlog3 +log(3)). It is O(n), which is greatly reduced from 3",
Inconsistent case: Vh € H, Rg(hs) # 0.

$)) or with
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Hoeffding inequality: Xi,---,X,, X; € [a;,b;]. Let S,, = >./°, ;, then P(S,, — ES,, > ¢€) <
5~ sy frmar)- A

Corollary: Ve > 08&h : X — {0,1}, Ps..pm (|Rs(h) — R(h)| > €) < 2e2m<,

Setting RHS = ¢ and solving for € yields for a single fixed h : V§ > 0, with probability > 1 — § it
holds that R(h) < Rs(h) + /55 log(2).

Thm: For finite %,V choose a h € H, -+, R(h) < Rs(h) + /5= (log|H| + log(2)).

Remark: Choose the optimal |/, tradeoff between Rg(h) | and log|#| 1 as |H]| 1.

Consider stochastic y: S = ((z1,y1),*+ , (Tm, Ym)) ~ D™, D distribution on X x ). Generalization
error R(h) = Pay~p(W(@) # y) = E@y~pl(h(z) # y).

Agnostic PAC learning: - -+, Ps.pm(R(hs) — minyeyR(h) <€) >1—9.

Bayes classifier: h with the Bayes error R* = infyeasurable nR(R). Why? Vo € X, hpayes(z) =
argmax,_  P(y|z)(unknown) with R* = Emin(P(0|z), P(1|x))(noise(z)). E[noise(z)] = R*.

Infinte hypothesis sets (Rademacher complexity)

Let g be a family of loss functions from Z =X xY to R, G ={g: 2z = (z,y) = L(h(z),y),h € H}.
Empirical Rademacher complexity: Radg(G) = Eosup, e 1" 0,9(z;) where o 1.i.d with P(o; =
+1)=1

Rademacher complexity: Rad,,(G) = Eg.p=Radg(G).

Rationale: Radg(G) = Eysup, oo =292,

McDiarmid inequality: If Jep, - ,¢, > 0 s.t. |f(x1, Xy ) — [y, x| <
¢; Vi, then Ve > 0, P(f(S) — Ef(S) > €) < exp(— 2

Thm: G is family of functions from Z to [0,1]. V5 > O w1th probability >1—4, it holds that Vg €
G:Eg(z) < 23" g(z)+2Rad, (G) + 4/ log(l/(S) JEg(z) < 2577 g(2) +2Rads(G) + 34/ Log( 2/5).
Proof: Let ®(S) = sup,cq(Eg — Esg). V.S’, S’ differing by exactly one point (z;, z}). <I>(S) —

P(9) < supgeG(ES,g — Esg) = supgegw < i By McDiarmid inequality, with probability
> 1—-6,2(5) < Es®(S) + W. We next bound Es®(S) = Egsup,cqFEs (Esg — Esg) <

Esssupyec(Es g — Esg) = Esssupecm S (9(2) — 9(21) = Eos,550cqm iy 0i(9(2]) —
9(2)) < Eyssupgeaa S0 049(2]) + Eos8up e Yoy —0ig(2;) = 2Rad,, (G). By McDiarmid
inequality, with probability > 1 — §/2, Rad,,,(G) < Rads(G) + v/ M Concluded by the union
bound, with probability > 1 —§/2, Eg < Esg + 2Rad,,,(G) + log@/é)

Lemma: h € H taking values in {—1,1},G = {(z,y) = I(h(z) ;é y) : h € H}, then Rads(G) =
iRads, (H).

Proof: Rads(G) = Eysupycrt S 00l (h(a;) # yi) = Eosuppey = S, 024 h(m ) — = 1 E,sup,cy
LS oih(x;) = 1Rads, (H).

Thm: H is family of functions taking values in {—1,1}. V§ > 0, with probability > 1 — ¢, it holds
that Vh € H : R(h) < Rs(h) + Rad,, (H) + 1/ 2222 R(h) < Rg(h) + Radg(H) + 34/ 2829

2m 2m

Infinte hypothesis sets (VC dimension)
Growth function: Iy (m) = maxg,, ... o, ycx| {(h(x1), -, h(xm)) : h € H} .
Lemma (Massart): A C R™ a finite set, r = max,ea||||2, then Eg(Ssup,c s > 032;) < TV/2loglAl

- m

where x = (z1,-++ ,Tp).
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Proof: This follows from the maximal inequality: If X,,---,X,, are sub-Gaussian, i.e. JIr > 0
s.t. BetXi < e7/2 Wt > 0, then Fmax,<;<,X; < rv/2logn. To show this, ¥t > 0, by Jensen’s
inequality, etPmas X < BetmaxiXs < S BetXs < pet’” /2. Taking log and dividing by ¢, we have
Emax;X; < 18 4 % Choosing t = /2logn/r yields the inequality. Check Y .", o;x; ~ sub-G
with parameter r = ||z||2.

Corollary: g € G taking values in {—1, 1}, then Rad,,(G) < w.

Proof: Rad,,(G) = ESEUsungG% Yo oig(a) < f\/210g|(g(m1; 9(@m)):9€C| zlogr:f(m).

VC dimension: The VC dimension of H in the size of the largest set that can be shattered by H:
VCdim(H)=max{m : IIy(m) = 2"}.

Computing VCdim: 1) 3 a set of size d shattered by #; 2) no set of size d + 1 can be shattered by
H.

In R4, VCdim = d+1, S = (0,ey,- - , eq) with arbitrary labels y = (0,91, - ,ya). Take hyperplain
(y,2) + % = 0. sgn((y,0) + L)=vo, sgn((y,e:) + §)=y;,Vi=1,--- ,d.

Radon’s thm: Any set of d + 2 points in R? can be partioned into two subsets where convex hulls

intersect.

Bounding growth function via VCdim: If VCdim(H) = oo, IIy(m) = 2™. What if VCdim(#H) =
d < o00?

Sauel’s lemma: If VCdim(H) = d, then I3 (m) < Z?:o C! . Proof: By induction on m + d.
Corollary: Il (m) < (%)% = O(m?),VYm > d.

Proof: By Sauel’s lemma, if m > d, [Ty (m) < S0, Ci < S0 Ci ()it < 3 Ch () =
(59 S G () = (241 + )7 < ().

Corollary: h € H taking values in {—1,1}, VCdim(#H) = d, then we have generalization bound:
R(h) < Rs(h) + szlogizm/d) + \/log2(71n/5) with probability at least 1 — 4.

Lower bounds

Realizable: 3h € H s.t. R(h) =

Idea: Probabilistic method: Find a bad distribution for any algorithm.

Thm: If VCdim(#H) = d > 1, then Vm > 1 and algorithm, 3 distribution D and target concept
f €M, st. Psopn(Rp(hs, f) > 1) > 0.01.

Proof: Assume X = (xo, @1, - ,xq—1) C X be shattered by H. Ve > 0, choose D s.t. Pp(xg) =
1 — 8¢, Pp(z;) = 325. . VS, we let 5' be the set of S’s
elements in {zy, - ,2q_1} and S be the set of S of size m satisfying |S| < 4%. Then fix S € S
and let U be the uniform distribution over all labelings f : X — {0,1}. Thus EtvRp(hs, f) =
25 Yowex I(hs(@) # f(@)P@)P(f) 2 X5 P(@) Xp I(hs(z) # f(2))P(f) = 53,05 P(x) >
%d; dse = 2¢. Taking expectation over S € S by Fubini’s theorem, E¢. yEscsRp(hs, f) > 2e.
Thus, 3fy € H s.t. Es~sRp(hs, fo) > 2¢. We can notice that Rp(hs, fo) < Pp(X — {x}) < 8,
thus 2¢ < Es.sRp(hs, fo) < 8¢Pses(Rp(hs, fo) > €) + ePses(Rp(hs, fo) < €). Solving yields
Pses(Rp(hs, fo) > €) > + = Ps(---) > $P(S). Finally, by the multiplicative Chernoff bound,
P(|S] > 8em(1 + 7)) < e=8m7*/3 'y > 0. Taking € = land y=1, P(|S] > 451) < e @-/12 <
e~ /12, We conclude that Ps(Rp(hs, fo) > €) > (1 —e~1/12) > 0.01.
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3 Model Selection and Regularization

e Tradeoff — excess error
R(R') — R*(Bayes optimal) = [R(Rh') — inf,eyR(h)] + [infreyR(h) — R*]. The former is es-
timation(statistical) error, and the latter is approximation error. Usuallt, take a rich family
H = UyerH,, as v T, estimation error 1, approximation error |.
In particular, y = f(z) + ¢, E(¢|X) = 0,Var(e|]X) = o2 Under squared error loss, R(zg) =
El(y — f(20))2|X = 0] = 02 + [Ef(z0) — f(20)]2 + E[f (o) — Ef(x0)]2. 1st is irreducible error,

2nd is bias?, 3rd is variance. Similarly, as v 1, bias |, variance 7.

increasing -y '

error

— estimation
— approximation
upper bound

hBayes H

For the LHS, the estimation error is in green and approximation error is in orange. For the RHS,

leftside of v* is underfit and rightside is overfit.

o General Methodology
Empirical risk minimization (ERM): hERM = argmin,, _,, Rs(h).
Estimation error of ERM: P(R(RE®M) — inf,cqyR(R) > €) < P(sup,ey|R(h) — Rg(h)| > 5)
Proof: Ve > 0,3h, s.t. R(he) < infheyR(h) + €. Then R(REFM) —infcyR(h) = R(RERM) —
Rs(hEEM) 4 Rg(hERM) — R(h.) + R(h.) — infrep R(h) < 2supj,cq|R(R) — R(h)| + . Letting € — 0
yields R(hERM) — infl,ep R(h) < 2supp,en|R(h) — R(h)].
Remark: Previous shown that with high probability 1 — &, sup;y|R(h) — R(h)| < Rad,,(H) +
%. ERM does not work for too rich families.
Structure risk minimization (SRM): H = U Hy, s.t. Hy, C Hyrr, h3RM = argmingo 9, Rs(h) +
Rad,,(Hy) + \/% . The second term can be replaced by other complexity measures and the last

term of inflation is due to multiple choices.
Thm: with high probability, R(A$FM) < infhey[R(R) + 2Rad,, (Hy) + /28] 4 | /Zoa/),

¢ Regularization
Constrained: argminwo’heyﬂi(h) + Pen(y,m).
Unconstrained: argminhe%w’lé(h) + APen(h).
Here Pen refers to Penalty Function. The result is A — 0: ERM; A 1: h simpler.

e Cross-Validation

For choosing the final model. Denote traning set as Sy, validation set Sy. |S1] = (1 — a)m, |Ss| =
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am, o € (07 1) hCV = argminhe{hERM k>1}7i’/52 (h)
Prop: P(sup,s|R(R5H") — R, ( (RSR) — +/ sk | > €) < 4 20me’
Proof: By the union bound and law of total expectation, LHS < 377 | EP(|R(hg)) —Rs, ]
> e+ \/%'Sl) S 220:1 2672am627210gk — Z;‘;l 1372672(177162 — %2672(177162 S 46720(777,62'
og max Ccv SRM

Th: whp., R(HGY) —~ R(™) < 9y/ " CUEHIETD o [l

S K mg
K—fOld CV RC\/(Q) = % Zi:l mil ijl E(hl(]}w),ylj)

Tradeoff: as k 1, we have m; |, bias |, variance 7.

K = m — leave-one-out CV. Usually, £k =5 or 10.

Information Criterion

Generalization error = Training error + “Optimism”

Def R = R(f) = 230, Ly, f(2:), Ry = Re(f) = 250, Eyo(£(50, f(@)|T) (in-sample test
error),0pt = R, — R. Here we consider 40 = f(z;) + €2, Var(e) = 021,,.

Under squared error loss, E(y; —9;)* = Var(y;) + Var(g;) —2Cov(y;, 9:) + (Ey; — E9:)?, E(y? —§;)* =
Var(y?) + Var(gi) — 2Cov(y?, 5i) + (Byf — Bgi). Thus, E(opt) = 2 S0, Cov{y ).

Consider linear fit § = Hy, thus Cov(y;, 9;) = Cov(el'y, el Hy) = el Var(y)He; = 0%l He; = 02hy;,
so that E(opt) = 20%tr(H).

Estimate in-sample test error: Mallow’s Cp: C), = R+ 2%&2 (d refers to degrees of freedom).
Generalize to log-likelihood: Akaike information criterion (AIC): AIC = —2log(lik) + 2d.
Bayesian information criterion (BIC) for model selection:

Given candidate models My, - -, Mk, model parameters 6, -, 0, prior m(M;) on models and
p(0;|M;) on parameters. Posterior p(M;|T). The odds ratio: 58&;@ = :Eﬁi; ;)gl%i;

For model M, p(T|M) = [p(T|0)p(0|M)db, so that —logp(T|M) = —logfp T|0)p(0|M)db :=
~log [ eX¥®df. By Taylor expansion, L (0) = Lar(0) + (0 — 0)"V Lar(0) + (0 — 0)"V2 L (6)(0
—6). Taking 0 as the MAP estimation s.t.VLy(f) = 0. By substituting back, [elv(®)df ~
S p(T10)p(0|M )exp(—5 (0 —0)"nl (0)(0 —0))d0 = p(T|0)p(0] M )(27)* det(nl (8))~*. Thus, —logp(T]|
M) = —logp(T|0) — logp(A| M) — Llog(2m) + 4logn + %logdet(f(é)) or —2logp(T|M) = —2log(lik) +
(logn)d (namely BIC).

AIC vs BIC: 1) AIC denser, BIC sparser; 2) Theoretical guarantees: AIC minimax rate-optimal for

prediction, BIC consistent for model selection; 3) AIC-BIC dilemma.

Bootstrap method for direct estimation of generalization error:

Goal: “out-of-sample” test error R = EL(y, f(x)). Training sample Z = {(z;,5:) 13 =1,--- ,n}.
Generate B bootstrap samples with replacement: Z*() ... Z*B)

Native estimate: Rpoor = = Zle S Ly, F*®(z,)) does not work.

Exclude bootstrap samples containing obs: R =1 ) D T} = T 2vec, LWi, O (2,)).
Q: How many distinct obs are used in training?

P(obs i sampled) =1 — (1 - 1) - 1 —e™ ~ 0.632.

Upward bias due to smaller training sample size.

Remedy: 1) .632 estimate: R(632) = 368R + .632R(1);

2) .632+ estimate: R(32+) = (1 — O)R 4+ OR® where & is data-driven weight.
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4 Linear Regression and Classification

e Linear Regression
Given the covariate/predictor # € RP and response y € R, E(Y|X) = XT38 = By + Z;’;ll xip;
where 7o = 1,2 = (29, -+ ,2p-1)",8 = (Bo, -+, Bp—1). Data {(z;,v;)},—, ii.d. The linear model:
Y =Xp+e
Least squares: minimise RSS(3) = ||Y — X||3. Differentiating, X7 (Y — X8) = 0 & XTX8 =
XTY. If X has full column rank, then § = (X7X) " 'X7TY. Predicted values: f(zo) = xT5. Oth-
erwise, less than full rank: g is stil unique, but B is not.
Remedy: 1) drop redundant variables; 2) regularization, especially when p > n.
Sampling Properties: Assume fixed deterministic design X and Var(e) = 02I,. Then E3 = §
(unbiasedness), Var(3) = Var((X7X)'XTY) = (XTX) "' XTVar(Y)X(X7TX)"! = ¢2(XTX)"!

If € ~ N(0702)7 then B ~ NP(B(J:OQ(XTX)il)?(}Q = %ﬁn”y_gH%E&Q = 0_2’ (’I’L—p)%i ~ Xz(n_p)'
(y,z5)

Algorithms for computing LSE: Orthogonal design (z;,zx) = 0, V7, k. Bj =Gaypd=Lp
Gram-Schmidt: 1) Initialize 290 = xo = 1; 2) For j = 1,---,p, regress x; on 2y, - ,2j_1 to get
Y = %,l =0,---,j—1 and residual vector z; = z; — Zi;é ki 2k; 3) Regress y on the residual

2t By = (22,

Interpretation of Bj: additional contribution of z; to y after “adjusting” xo, - ,2;_1,Tj11, ", Zp.

Effect of multicollinearity: Var(j,) = H2 large when [|z,]|2 is small.

Hz

Remedy: regularization (later).

Q: How to get all 3; in one pass?

O ("
. 0 1 /)\/]_p .
QR decomposition: X = ZI' = (zp, -+ , 2p) . Let D = diag(]|z0|2, - -, [|2pl]2)s
o 0 --- 1

X = (ZD1)(DI') = QR where QTQ =1. So = (XTX)'XTY = R1QTY,j = 28 = QQTY.
Mult-response/multi-task learning: ¥ = XB+E, Y € M, ((R), X € M, «,(R),B € M,.,(R),E €
M, »,(R). Minimise RSS(B) = ||[Y — XB||% = tr(Y — XB)T(Y — XB)),B=(XTX)'XTY, de-
conples to g unrelated regressions.

Assume e; ~ N,(0,%). MLE is equivalent to minimising —2log(lik(B; X)) = tr((Y — XB)T(Y —
XB)Y 1) + const(X), B(X) = the same.

Q: When is the problem not separable?

1) each eequation has different sets of predictors and and ¥ is not diagonal;

2) B has low rank (or other constraint/regularization).

o Linear Classification
Decision boundaries on which f(z) = fi(), i.e.fe(z) = Bro+LTx, {x|(3k0 —Bio) + (B — B)Tx = O}.
Method 1: Linear discriminant analysis (LDA).

P(G=kX=2)= % where f;(x) is density for class [ and ; is prior of class [.
Idea: Use Gaussian density with common ¥, fi,(z) = (2r) P/2det(X) ~/?exp(—1 (z — pi) 'S (= —
pi)). log-odds ratio: log P(l|‘z) log 7k —pE S A ST 42T S (g — ). Here, S (e — )
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is discriminant direction.

Discriminant function: 0x(z) = 27Xy — 4 uf X7 pu+-logmy,. Decision boundaries: {x[0;(2) = 6;(z)}.
Fitting: 7 = 3, i = 3, i/ Ni, 2 = PO D gimn (@i — i) (@i — )" /(N = K).

Extension: Quadratic Discriminant Analysis (QDA): Use class-specific X: Y, = sample covariance
of class k. (No longer a linear method!)

Method 2: Logistic regression.

Naive method: indicator response matrix Y, with a single 1 in each row (“one hot”). Then
Y = XB+E,B=(XTX)'XTY, f(zo) = BTz, G(z) = argmax, fy.(z).

Logistic: log2 %2 — g, + 8T k=1,--- , K —1. Solving yields P(k|z) = xp(Por+5; @) k=

P(K[z) — 145757 exp(Bor+87 )’

_ 1
1,---,K—1,P(K|z) = S F T exp(Gor 1 57e)"

Remark: Permutation invariant, but not for structured B.

When K = 2, logistic regression has a strong bond with sigmoid function. Specifically, it conducts

. . . . 1 1
a linear transform over x of Sigmoid(z) : {o—= = =G
2.0
— beta=[10,10]
beta=[50,50]
1.5 A —— beta=[-10,10]
—— beta=[-50,50]
1.0 A /*
0.5
0.0
—0.5 4
—1.0 T T T T T
-15 -1.0 -0.5 0.0 0.5 1.0 15

Fitting MLE via Newton-Raphsen (iteratively reweighted least squares).

Specially, if samples of different classes can be linearly separated, MLE is undefined (i.e. infinite).
Comparing LDA and LR: In LDA, log If((lk(l'?) = log7t — e — ) TS (e — ) TS (e — ) =
g((;@@)) = Bor + Bf . They take the same form. A great difference is in

P(X,G) = P(X)P(G|X), where P(X) — Gaussian for LDA while P(X) — unspecified for LR.

aor + af z while in LR, log

Some Propositions

1) Consider Y is indicator matrix, regress X on Y and we get B,Y = XB. Show that using LDA
on X is equivalent to LDA on Y. (Hint: prove z7S 'y, = 975 iy, and pIS 1y = aT5 1)
2) If RSS(B,X) :== SN (yi — f(2:))"S " (y; — f(x:)), we also have the same estimate, i.e.B =
(XTX)"'XTY. (Hint: by letting 225522 — ()

3) If X = (X1,X1, -+ ,X;1) has identical columns, then by ridge regression we will get identical

coefficients 8 = (61,81, -+, f1).



LASSO AND RELATED METHODS

5 Lasso and Related Methods

e Why imporve least squares estimate?
1) generalzation: MSE = bias? + var, trade bias for variance;
2) interpretation: sparsity, variable selection;
3) stability: robust to perturbations on data.

Contours of different £}, norms:

qg=4 qg=2 g=1 g=10.5 qg=0.1
| | | |
| |

o Best subset selection
Best subset selection (% regularization): minimise ||y — z3||3 s.t.||8||o < k where k is a tuning
parameter and [|8][o := |[{j : B; # 0} |.
Remark: %} regularization is hard to get accurate solutions.
Algorithms: Mixed integer optimization. p ~ 100s or 1000s for approximate solutions.
Greedy strategies: stepwise selection: 1) forward: start with null model, add one prediction at a
time; 2) backward: start with full model, delete one prediction at a time; 3) bidirectional: combine
both forward and backward solution.

Dropbacks: 1) Solution path not continuous, unstable; 2) No bias for k > ||5*||o, high variance.

o Ridge regression
Ridge regression (% regularization, weight decay in deep learning): minimise ||y —z 3|3+ A||8]]3 &
minimise ||y — 2|3 s.t. ||8]]2 < t. (“&7 is due to the convexity)
Centering: we default there exists no intercept. Otherwise, center both y and = by y — ¥, z;; — Z;.
Solving yields § = (XTX + A) ' XTY.
Shrinkage effect: SVD X = UnxprXpV;,Xp, U has orthogonal columns (UTU = I), V orthogonal
(VI'V =vVvT =1), D = diag(dy,- - ,d,). (Assume n > p,d; > -+ > d,,)
Least squares: X% = X(XTX)'XTY = UUTY = > ujulY.
Ridge: X fridse = X(XTX+)J)—1XTY UDVT(VD?*VT+X)~'VDUTY = UD*(D*+A\I)~'UTY =
f L di/\u] TY A>0= d2+/\ < 1 = Shrinkage.
Degree of freedom df(A) = tr(X(XTX + XI)7'XT) = tr(UD?*(D* + \XI)~'UT) = tr(D?*(D? +
AM)™H = zld2+A df(\) - pas A — 0 and df(\) — 0 as A — oo.
Bayesian interpretation: y ~ N(X3,021), 8 ~ N,(0,72I). 379 is the mean of | X,Y ~ N((XTX +
1) XTY, %), Here, A = 2.

e Lasso
Lasso (£, regularization, least absolute shrinkage and selection operator): minimise -]y —z||3 +

A|B]|1 < minimise ||y — z6]]3 s.t.||3]|1 < t. Closed-form solution does not exist.

10
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Variants: 1) Dantzig selector: minimise ||8]|; subject to ||+ XT(y — X)||o < A.

Note: The Lasso solution satisfies the KKT(Karush-Kuhn-Tuckel) condition = X7 (y—X)+Xz =0
where z € 9| - ||, = [-1,1]. So 2||XT(y — XB)|| < A

2) Bridge: .Z;(q > 1),.%, 5 regularization, etc.

3) SCAD: denote the regularization term as Y ._, px(5;), then p\(t) = Asgn(t)[I(t < \) + I(t >

(aX—t)
A (afl);

)
)
)
4) MCP: p\(t) = sgn(t)%,a > 1. (“folded concave”)
)
)

|,a > 2. (release penalty for enough large \)

5) Elastic net: & + %, \a||8]|1 + AM(1 — «)||8]]3. (“grouping effect”)
6) Adaptive Lasso: pr(8) = A Z§=1 w;|Bj], w; = |B]—|_V,7 > 0 where [3’]- is your initial estimate.

Algorithms for Lasso

Prop: Under orthogonal design (i.e. XX = I), we have 5*(\) = 5I(|3%| > X), frd=e()) = H%BIS,
Feso(3) = sgn(3%) (15 — ).

Alg 1: Least angle regresssion (LARS).

Idea: path following. Exploit the piecewise linearity of the solution path; homotopy algorithm. If
a non-zero coefficient hits zero, drop its variable from the active set of variables and recompute the
current joint least squares direction. Time complexity O(p?® + p?n), the same as least square, but
low efficiency when p is large.

Alg 2: Coordinate descent, shooting algorithm.

With current estimate 3, minimising f(8;;8) = £ S0, (i — D ket TirBe — i30;)% + A Dkt |Be| +
AlBj| gives B = Sx(O2imy @i (Yi — Dk ZixPr)) where Sy (z) = sgn(z)(|z] — \)+ (after standardizing
|z;||]2 =1). Cycle through j =1,--- ,p,1,-- ,p,---.

Alg 3: Alternating direction method of multipliers (ADMM).

Idea: Split problem into two subproblems which can be solved alternatively. Minimise f(53) + g(7)
s.t.8 —v =0 where f(8) = 3|ly — 243, 9(7) = Al|7l]1-

Augmented Lagrangian: .Z,(8,v,a) = f(8) +g(v) + (@" (8 —~) + 5|8 —7|[3) (scaled form: £||3 —
v+ a3 with a = ).

ADMM iterates S «+ (XTX + pI)"HXTY + p(v* — o)) (ridge), 7" « Sy, (B + oF)
(soft-thresholding), a**1 « af + g+l — yk+1

Theory for Lasso

Goals: 1) Variable selection consistency P(sgn(Bj) = sgn(f7),Vj) > 1-4; 2) Nonasymptotic bounds
on estimation/prediction V finite p, n.

High-dimensional: ambient dim p >> n, but intrinsic dim ||5*||o = |{j : Bk # 0} | :== s << n.
Identifiability: when p > n, the Gram matrix ¥,, = %X T X is singular, hence 8* is not identifiable.

Remedy: Assume ¥,, is nondegenerate in certain “sparse” directions.

Restrained eigenvalue (RE) condition: k(s,co) = minjcqi,... p},)7j<sMils0,(5,¢ (|1 <col|6]]1 \/Hﬁi(lg“]‘ﬁ? >
0. (after standaridising ||z;||2 = v/n) (RE(s, co) condition)

Lemma (Basic inequality): Let S = supp(8*),e ~ N(0,0%),\ = CJ\/% with C' > 2v/2. Then
with probability > 1 — p'=¢*/% it holds that 1[|X (8 — 8*)[[3 + All8 — B*|l1 < 4A||Bs — B5llx <
IA3llBs — Bl

Proof: By optimality of 8, 2[|Y — XB|3 + A8l < &Y — XB*|)3 + X||8*[|:- Substituting

) 2n =
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¥ = XB* e gives 2 le— X(B— )24 NIl < 1B+ A1l or £ IX (B8 < 2eTX (-

B+ 8%l = MlIBl]1. If € ~ N(0,02), by Gaussian concentration 1nequality, P(||[2XTe|| > 3) <
L P(2XTel > 3) < pe ™A\ /(87%)  Take A = CJ\/% with C' > 2v/2, then pe="*’ /(87" —

pl=C?/8 5 0. Conditional on the event A = {I[XTe||o < %} which holds with probability >

PO, L|IX (3 - Bl < AllG — 5l + 2015l — A1l Ading A3 — B[ to both sides,

LIX (3= 8°) B+ AL — Bl < 27113 — 811 +118° 1 — 1311) = 27(13s — 85111+ 18511 1]} <

s - 831l

Corollary: On event A, |[0g<||; < 3||ds||1 where 6 = 3 — B*.

Proof: Basic inequality implies A[|0][1 < 4A[[0s]]1, or |[dse|]1 < 3[|0s]]1-

Thm (nonasymptotic bound): ||3 — 8*||, < 8¢ as\/@ with probability > p!~¢*/8,

Proof: By the basic inequality, 1||Xd|[3 < 4X\/s||0s||2. On the other hand, by RE(s, 3), \/“ﬁ)I(Ig!\zb >

k> 0 or ||ds]]2 < ”\XF%. Combining || X4[[3 < 4)\\f“X6”2 or 1|X4[|3 < 183 = 1(;—(;‘202810#.

Moreover, ||8]]1 < 4||ds|]1 < 4v/5]|0s]]2 < 4fHX6||z < 4f4c /sljbgp 15¢, /10517

Prediction consistency: I estimate slogp = 0( ) and Iy estlmate s?logp = o(n).

Q: Is the Lasso still prediction consistent without assumption on X7

Thm: Assume ||8*]|; < K. Then solution § to minmises||Y — X8|2 s.t.]|8]|; < K satisfies with
high probability, 1||X (8 — 8*)||3 < CKoy/ L.

Proof: By defnition, Y is the projection of ¥ onto the compact convex set C = {X3 : ||8||, < K}.
Also, since ||8*||; < K we have Y* = X* € C. Thus, 0 > (Y —Y*)T(Y —Y) = (V = Y*)T(Y —
V=Y 4+Y) =Y - Y- (VY —Y)T(Y =Y or LY —V*|} < LY —Y)T(Y - Y*) =
LETX (B~ %) < || 27X ||w]|B — 8] (on A) < 32K = CKo /22,

n

Extensions

Group Lasso: y = Zgazl x4y + € where x4 € My, (R) and B, € M, «1(R). Penalty: pr(8) =
Ao v/BallByll>-

Example: Multivariate regression: Y,,yq = X, xpBpxq + E.

Lasso (entrywise): A||B[|1 = A}, ; [bijl-

Prediction selection: select predictors having effects on all responses.

Reduced rank regression (RRR): minimise ||[Y — X B||% or tr((Y — XB)T(Y — XB)X™!) s.t.
rank(B) < r Denote non-zero eigenvalue of (BTB)? as o,(B), and rank(B) = ||o(B)|lo. Also
we have a new regression method: minimise||Y” — X B||%. + M||B||., where ||B||. is nuclear norm:
> 0;(B) = |lo(B)|[; = tr((BTB)%). (the last Ky Fan norm)

Sparse LDA: Idea: Exploit connection between LDA nad LS.

Lemma: Label the classes y; = fn%,yg = n%, where n = n; + na. Let Bls = argming Z?:l(il/i —
Bo — 2T 3)2, then ' = O~ (fiy — fiy) for some C > 0.

2 regularization version: minimiseg Y ., (y; — Bo — z7 8)* + || B]|.

Dantzig selection type: minimise ||3]]; s.t. [|28 — (fix — fi2)||oc < .

Sparse GLMs (Logistic, Possion, etc.): minimiseg — loglik(3) + Al|5]]1-
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6 Support Vector Machines

e Separable case
Separality hyperplanes- L:By+ BTz =0. Vay,29 € L, (21 — 22) = 0;Vag € L, 29 = —Po.
Denote * = W Signed distance: S (z — zo) = (8% — BTzo) = %(BTx + Bo)-
Perception learning: f(x) = 8Tz+ B, G(x) = sgn(f(z)). minimise D(8, By) = — S iear Yilxl B+Bo)
where M is misclassified set.

Algorithm: %—g == iem YiTi, ﬁ% = — Y ;em Yi- Randomly pick a misclassified point z; and update
(B,B0)" < (B, Bo)" + p(yiwi, y:)" where p is learning rate. (SGD)

o Nonseparable case
Goals: maximiseg g, gj=1M s.t.y; (] 8 + Bo) > M,Vi. Let M = LH rewrite as minimiseg g, ||/
styi(al B+ Bo) > 1.
Introducing slack variables &1, - -+, &y, sty (a] B+ Bo) > M(1—&),& > 0,5 & < K.
Optimization problem: ming g, ¢3||B]|* + C Y, & s.b. & = 0,y (af B+ Bo) > 1 — &, Vi.
Lagrangian: £ (8, b, ¢, o H) = %Hﬁ”z + O & — i qulyi(@] B+ Bo) — (1= &) — D0, ik
Setting derivatives to zero, 86 =pB->" oy =0, géﬁ — > ay; =0, gf C—a;—p; =0.
In addition, a, p1;,& > 0. Dual problem: maxg g, ¢.0,,-Z(+), s.t.V.Z = 0, o, t; > 0. Dual objective
fanction: £ = | Yy e +C XLy &~ Syl Xy e +4) ~ 1461~ Yo =
Do — 5 2o gy g st 0 < oy <O, SN iy = 0.
Why called SVM? Complementary slackness: ;[y;(z] 8 + o) — 1 + & = 0, ;& = 0, Vi. Because
B = Sor duyir; and oy # 0 iff yi (2] B+ Bo) = 1 — &, # is only determined by support vector. 1)
& =0, on the margin’s boundary, or 0 < &; < C; 2) & =0, or& =C.

e Kernel method: nonlinear boundaries
Transfrom the input into h(z;) = (hq(z;), -, hp(x;)).
Lagrange dual: Zp = >, o — 53, >, iy (h(w:), h(z;)).
Reproducing kernel Hilbert spaces: Idea: Generalize covariance to infinite dimensions.
Def: A bivariate function K on E x E is called a reproducing kernel for a Hilbert space J¢ if a)
Vt € E,K(-,t) € 5; b) (reproducing property) Vf € . and Vt € E, f(t) = (f,K(-,t)). When
such a RK exists, .77 is called a RKHS.
Example: /7 is finite-dim, with orthogonal basis {e1, - ,e,}. Define K(s,t) =Y ", e;(s)e(t).
Check: a) K (1) = S0, ex(Jealt) € 5 b) (e, K (1) = (5, 50, ex(ealt)) = e5(0):
Def: K on E x E is positive semi-definite(PSD) if Vn,{¢;, - - - ,tn} CE, 3 Yo aia; K (ti,t;) > 0.
Thm: The RK K of a RKHS 47 is unique, symmetric and PSD.
Proof: Suppose 3K, Ky for 5. Then f(t) = (f, K1(-,t)) = (f, Ka2(:,t)) or (f,(K; — Ks)(-, 1)) =
0,Vf,Vt = (K1 — Ka)(+,t), (K1 — K3)(-,t)) =0,Vt € E = K; = K».
Symmetry: K(s,t) = (K(-,t),K(-,s)) = (K(-,s),K(-,t)) = K(t, s).
PSD: 2, >0 aia; K (i, t) = 32, D05 aiai (K (1), K (1)) = (32, @il (- 1), 325 a; K (-, 5)) > 0
Thm: V symmetric PSD function K(-,-), 3 a unique RKHS.
Consider the regularized problem in RKHS: minimise e Y L(yi, f(x:)) + AJ(f) where A\J(f)

is penalty function. Orthogonal basis {¢;}52, : f(z) = Y 1o, citi(x), K(z,y) = Do) Yidi(2)di(y).
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Let J(f) = [[f|[%. we get generalized ridge: minimise(c, 2 >0 L(yi, 25—, ¢i;(i)) + | f[1%-
Let K = (K(2:), K(2;))7520, f(2) = Y i (2, 2:),@ = (an, -+ ,a,)". Then J(f) = [|f|3 =
(i K (), D00y g K (- 25)) = 200 D00 awa K (g, ) = aTKa. So we transfer original
problem to minmisizes £(7, K&) + A\aT Ka.

Method: 1) Kernel smoothing; 2) Splines, basis spansion (wavelets, etc.).

Choices of kernel function: 1) polynomial: (1 + (z;,x;))*; 2) radial basis: elzi==ill*: 3y Sigmoid:
tanh(ky(x;, ;) + k2).

Regularization on SVMs & SV regression

Our goal is to minBﬂOf%HMP +CY i & ost.& >0,y (] B+ Bo) > 1— &, Vi < ming, 50%||BH2

CYr (1—yif(z:))+ orming g, >oi (1—yi f(z:))+ +3|BIP A= %) = hlnge loss + regularization.

C large, A small: & small, ||§]| large, wiggly boundary, tends to overfit.

C small, X large: &; large, ||| small, smooth boundart, tends to underfit.

Two key ingredients for SVMs: 1) hinge loss (soft margin); 2) kernel trick (dual problem is simple).

Nonparametric setting: Suppose K has the eigen-expansion: K (2,y) = > _| 0m®m(2)Pm(y), then
hon(x) = fd)m( ). Optimization problem becomes min Y 1" (1 — y;(Bo + Do) Om®Pm(2:)))+ +

DD U— where 0,,, = \/0mBm. We guess 3 a finite-dim solution: f(z) = By + Y1 K (z,2;),

where [y, = argming, , > (1 —yi f (i) 4 + 2aTKa.

Regression: replace hinge loss by L.(y, f) = (|y—f|—e)+, our goal is to ming, g, L (ys, f(2:))+5]|8] I,

where f(x) = 2T + fo.

Introduce slack variables &7;, the goal turns to ming g ¢, n; 25y (& + 1) + 511811 s-t. v — f(2i) >

—e—&,yi — flx) <e+mn;, & >0,m > 0,Vi.

Margin Theory

Using VCdim-based generalization bound, R(h) < Rg(h)+ \/ leog(em/ 44 \/ logQ(;/‘s). VCdim(RP) =

p+1, R(h) < Rs(h) + O( M) which requires p << m.

Goal: Dim-free, margin-based generalization bounds.

Def: Confidence margin: yh(z), p-margin loss ®,(x) = 1(z < 1),1 — %(0 <z <p),0(x>p),
empirical 7Azsyp(h) = o iy Pp(yili(xi)) < oo 30 I(yih(x) < p).

Lemma(Talagrand): If ® in L-Lipschitz, then ¥V hypothesis set 7, Radg(® o H) < LRadg(H).
Thm: Fix p > 0, ¥ > 0, the following holds Vh € H, with prob > 1 — 4§, R(h) < Rs,(h) +
2Rady, (1) + /2502

Proof: Let G = {z = (z,y) — yh(z) : h € H}. By Rad generalization bound, Vh € H, with prob >
13, BE®,(yh(z)) < Rgp+2Rad, (,0G) +1/ 8L Since R(h) = EI(yh(z) < 0) < E®,(yh(z)),
& by above lemma, Rad,,(®, o G) < %Radm(G) = Eso8ubpey 2oy oiyih(z:) = JRad,,,(H).
Remark: This can be made uniform over Vp € [0,7] where r is fixed: R(h) < Rsg.,(h)+ %Radm(’}-[) +
\/loglogz(Zr/p + \/log 2/6) )

Thm: Let S C {x:||z]| <r} and H = {& = (w, ) : |[|w]|| < B}, then Radg(H) < %.

Proof: Radg(#) = - EoSUD| || <B oty 0i(W, 23) = = Egsup), <p(w, Yim ) 0ix;) < ZEL|| 3" 0

zil] < E\JE || S0 il [P < (/S0 (a2 < 22,

Corollary: For fixed p > 0, R(h) < R ,(h) + % + 34/ logéﬂ.

m
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7 Boosting

e Idea: Sequentially combine a set of weak learners into a single strong learner.
Weak classifiers Gy, (z),m =1,--- , M. Combine to form G(z) = Sgn(zﬂl\il G ().

e AdaBoost
1) Initialize w; = %,i =1,---,n.
2) Form=1,--- , M:

— a) fit G,,,(x) to training data weighted by w;;
- b) € = Zwil(yi?me(J;i));

wiq
l—€m.

—c¢) a,, = log

€m

—— d) update weights to overrepresent misclassified cases: w; <— w;exp(a,I(y; # Gm(x;))).

3) G(z) = sgn(> G (x)).

o Statistical view
Additive models: y; = ijl Bif(x;;v) +e.
Forward stagewise additive modeling;:
1) Initialize fo(z) = 0;
2) Form=1,--- ,M:
——a) (B ym) = argming | 370, L(Yi, frn—1(2:) + BG (2:));
—b) fulx) = for(z) + BnG,,, (2).
Take expotential loss: L(y, f(z)) = e /), then (B, Gm) = argming ¢ > exp(—y;(fm-1(z) +
BG(x:))) = >, e~vim-1(@)e=PuiG(e) (™) = e~vifm-1(20)) = ¢=F D isyi—Gan) w{™ + e D iy Glae)
w™ = (e ) S w™ (i # Glai)+e P S, wf™. Sothat Gy, = argming 37, wi™ I (y: #
G(2i)), B = argminﬁ(eﬁ —e Pey +e P = argminﬁeﬁem +eP(l—ep) = %logﬂ. By the define

of w(™, w!™TY = ™M e=BnviGm(@) = p(™ 2Bl (WiFCm (@) g=Bm = (™ gemI (Wi #Cm (@) g=Fm
P(y=1z)

Remark: f(z) = argminf(x)Eye_yf(x) = %IOgP(?—l\x)'

o Loss functions and robustification
a) misclassification error: I(y # sgn(f));
b) binomial deviance: log(1 + e~2%f);
c) square error: (y — f)%;
d) hinge loss: (1 —yf)+;

e) expotential loss: e ¥7.

¢ Boosting for regression

a) squared loss: L(y, f(z)) = (y — f(x))%
b) absolute loss: L(y, f(x)) = |y — f(z)]

().
ly — f(2)]? ly—f(z)] <6

c¢) Huber loss: L(y, f(x)) =
26(|ly — f(z)] — 6%),  otherwise

¢ Gradient boosting

Choose h,, = —pmgm where p,, is a scalar and g, € R".

15



BOOSTING

OL(yi,f (x4
Gomi = HELLLA | p ey and py, = argmin, L(fr -1 — pg(m)).

The above is only defined at the traning data points x;, thus we can induce a tree T'(z;0,,) at the

m-th iteration whose predictions ¢,, are as close as possible to the negative gradient. Using squared

error: ©,, = argming Z?{:l(—gmi —T(z,0))2.

Theory for AdaBoost

Assume sample size m, base classifiers h; and T rounds of boosting.

Thm: The empirical error of AdaBoost Rg(f) < exp(—2 ZL(% —€)?). Moreover, if vy < 1 —¢, Vt,
then Rg(f) < e 2T,

Proof: Rs(f) = LS50 I(yif(z;) < 0) < L3 e~f@). Let Z, be the normalization factor

(T+1) _ — Lw(T)e—aTyihT(xi) — 1 ’U)(Til) —ozTyihT(mi)e—aT_ly,;hT_l(z,;) —_
Zi Zr-1ZT

= mH+ZeXP(_yi Zt:l athy(x;)). Therefore 7%3( f) < Ht V2D 1w(T+1) = H?:l Zy. Also,

Zt = Z:n 1 w(t) monyihe(@:) — Zi:y,y:h,,(.ti) w’gt)e_at +Zzyl;ﬁht(r7) wz( )6041, = (1 - Gt)e_at +€t6at = (1 -

“te /It =2\/6(1—¢). Thus, [T, Ze = [[,_;r 2v/e( — &) = [[_; /1 -4 —e)? <
T

Ht 1 eXp( 2(* - et)z) = exp(—2 Zt:l(% —€)?).

Remark: “Adaptive” to v or €.

of distribution weights, w;

€t

Margin theory
Hypothesis set for AdaBoost: Fr = {sgn(>1_, avh) : oy > 0,hy € H}.
VCdim(Fr) < 2(d+ 1)(T + 1)log,((T + 1)e) = O(dT1ogT) where d = VCdim(H).

Not useful for large T. The reality is test error = 0 but generalization error | with 7' 1).
Lf@)] _ [(ah(x))]

llefle = lalh

Def: £ (geometric) margin ps(x) = , Py = minj<;<;,ps(x;). This is the confidence

margin of f = ﬁ

Let conv(H) = {>20_, pujh; :p > 1,0 > 0,h; € H, 37 p1; < 1} be the convex hull of H.
Lemma: Radg(conv(#)) = Rads(H).

Proof: Radg(conv(H)) = r EoSUD, 3050 ull <1 Diet T 2i—y i (24)

= i EoS P, cnSUP,, >0 <1 Loyt Ky ey Oy (@) = 5 Eosupy, eymaxi<j<y 3 i 0ihy (:)
= L~ E,supj,cy >y 0ih(z;) = Radg(H).

Corollary: R(f) < Rs,,(f) + %Radm(”H) + 4/ log(l/é) with prob at least 1 — 4.

Finally, we verify that R ,(f) decays exponentlally with 7.

Thm: fzsp(f) <oT HtT ) (1*P)/2(1 )(1+p)/2

Proof: Rs,,(f) < L 21 I(Y \a(ll )<<t Ly emwif@tellalh — ellelh Hle Z,

= exp(§ 30, log e [T, 2/e (T — ) = T T, 21— e,

Remark: If v < 2 5 — € and p < 2v, then the upper bound is maximized at ¢; = % - ﬁg,p(f_) <
[(1 = 29) (14 2) 9772 = [(1 = 49) (H22)7]7/2 < 1 when p < 1.

Regularization for AdaBoost

Idea: Prevent the algorithm from concentrating on a few base learners and/or hard examples.
Method 1: Early stopping.

Method 2: % regularization: minimiseq>o= > ., e V) 4 N||a[;. Why?

By margin bounds, Vf = Y. a;h; with [|ally <1, R(f) < £ 30", el-vi/ /e 4 %Radm(’}-[) +

or, since f/p has the same generalization error as f, V|||l < 1/p,R(f) < =37, elvif@) ...
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CLUSTERING AND DIMENSION REDUCTION

8 Clustering and Dimension Reduction

o Clustering
Dissimilarity measure D = (d;;). Given clusters K < n, dertermine cluster assignmeng k = C/(i).
Total point scatter T'= 5 37| >0 dij = 3 S Ycwy=k(oi)=k dij T 2 ozk dij) == W(C) +
B(C) = within-cluster + between cluster.

Goal: find the optimal C* minimizing W (C) or equivalently, maximizing B(C).

Greedy algorithm: Use Euclidean distance as dissimilarity measure: d;; = ||; — x;||>. W(C) =
3 2521 Zc(i):k Zc(j):k |lws — z;* = Zf:l T, Zc(i):k ||z — z[|* where ), = ﬁ Zc(i):k ; and
e = [{i: C@) = k}|.

K-means: 1) Fix cluster assignment C, minmisize,,, 3¢y ||z — mg||%;

2) Fix means my, update cluster assignment C'(i) = argmin, ||z; — my||*.

Remarks: a) Desent property; b) Multiple random starts.

Soft K-means (Gaussian mixture generative model): g(x) = Z,I;I gk (), gx pdf of N (ug,o?),
>0, >, m =1

EM algorithm: 1) E-step: compute soft assignment 4;, =

Frgr (Ti3in,6%)
> g (i u,62)7
2) M-step: update weighted means and variances.

Spectral clustering: 1) connected components; 2) not locally clustered.

Idea: Use tools of graph theory to reduce dimension and apply K-means to the transformed data.
Weighted undirected graph(network) G = (V,Z), adjacency matrix W = (w;;)nxn,wi; > 0,
e.g.w;; = exp(—d3;/v), KNN, etc.

Graph Laplacian: L = D — W where D = diag(dy, - ,dy),di = >_; wij.

Normalized Laplacian: L = D~Y2LD~1/2 = [ — D=2 D~1/2,

Prop: L satisfies a) Vf € R*, fTLf = 53", wi;(fi — f;)? b) L is symmetric and PSD; C) L has
eigenvalues 0 = A\; < --- < )\, with (1,--- ,1)7 being the eigenvalue associated with 0.

Proof: a) fTLf = f"Df — fTWf = > dif} — Zi,j wifif; = %(Zz Zj wi; f7 + 2 Zj wwff -
2>, Zj wiififj) = %Zi,j w;; (fi — f;)?. b) Row/column sums of L are 0.

Thm: The multiplicity of eigenvalue 0 of L equals the # of connected components of G, say
Ay, -+, Ak. The corresponding eigenspace is spanned by 14,,---,14,.

Observation: The between-cluster dissimilarity is reflected by the smallest nonzero eigenvalue of L.
Spectral Clsutering: 1) Fixed the m eigenvectors associated with the m smallest eigenvalues of L,
denoted Z,,«.m; 2) Apply K-means to the rows of Z.

Guarantees: 1) graph cut; 2) random walks; 3) matrix pertubation theory.

o Dimension reduction
PCA: Idea: Find best rank-q of linear approximation to the data. Approximate x; by p+V,\;, V, €
M,,(R), \; € R
Goal: Minimise " | ||@; — p — Vo\i||?, V, has orthogonal columns.
One can show, given V,, i = Z,\; = V) (z; — ). Then find V, minimising > |[(z; — &) —
VoV (x; — 2)|]? or [|X — XV,V.I'||%. The solution is given by the SVD of X: X = UDV™ and V,

is the first ¢ columns of V. Columns of UD are called the principal components of X.
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GRAPHICAL MODELS

9 Graphical Models

e Gaussian graphical models
X = (Xy,---,X,) ~ Ny(u, X) where ¥ is positive definite, undirected graph G = (V, E),V =
{1,--- ,p} vertex set and E edgeset (i,5) ¢ Eiff X; 1 X;| X ... p)\(4,5) (conditional independence).
Precision/concentration/inverse covariance matrix: © = 371
Prop: X; 1L X;| X, py\qa,jy iff ©55 = 0.

Proof: By properties of multivariate normal, the distribution of X1y = (X;, X;) given X =
X1, pP\ (i} 18 Na(pta)2, X1j2) where ¥y = 31 — Y1955 Y91, Thus X; 1L Xi| X, pygigy iff
0;; = 0. On the other hand, by partioning ©% = I, ©11X11 + 12221 = [,011X12 + ©12X22 = 0.
Then 01182 = 011(X11 — 212855 1) = 011511 — 011812855 Ua1 = 1 — 01501 + 1585 = 1. So
0j;  —bi

p ) - ) This implies that oy)2,; = 0 iff 6;; = 0.
—0; ii

that Yo = 0y = m (

o Precision matrix estimation
Method 1: Neighborhood-based. From X ~ N, (0,%7!), we have X 4|X 4c ~ N(—©0,40.44:Xac,05Y),
suggesting the linear model X4 = B% X . + 14, where By = —@AACG)EL. When A = {i}, this
reduces to X; = 8] X(1... pp\ (i} +mi where §;; = —%. “nodewise regression”: supp(B) = supp(0O).
Pros: Borrow techniques from linear regression, fairly stable.
Cons: Nontrivial to estimate magnitud of 6;;. Not symmetric or positive definite.
Method 2: Penalized likelihood (graphical Lasso): The Gaussian log-likelihood I(u, ¥) = Flogdet(©)—
30 (xi — p)O(z; — p). Substituing the MLDE X for p, [(©) = %logdet(©) — 2tr(©%). Assume
© is sparse, minimisegy.o — logdet(©) + tr(0%) + A[|O|[; (entrywise /;-norm).
Method 3: CLIME (Constrained /;-minmimization): minimise ||©]; s.t.||£0 — I||c < A. Equiva-
lent to p linear programming probelms: minimise ||6;]]; s.t-|[$6; — e;]|oc < A = ©. Symmetrization:
© = (6i;) with 85 = 05 = 0, 1(10,5] < [6,5]) + 05 1(16,5] > 10551).
Nonasymptotic error bounds for CLIME: Sparsity class: U, (M, so(p)) ={0:0 = 0,[|0||# < M,
max; Y7y [0:;]7 < s0(p),0 < ¢ < 1}
Lemma: Assume Oy € Uy(M, so(p)). If A > ||©]| .2, |2 —20]|oo, then ||©—0Ogl|sc < 4]|O¢]| 4 A, [|©—
Ooll.z, < Cso(p)A'.
Proof: Since ||X0¢ — Il = [|(X — X0)O0]loc < [|X — 2ol ]1O0l]le < A, ©p is a feasible solu-
tion. By the optimality of ©, O||% < ||O¢|l%. Write that |[© — Oglls = |[©00(O© — O)||sc <
186]].2,1[Z0(6 = ©0)l oo < [|©0ll2,{|1£(E = o)l [oc + (52 = To)(|[© = O0)loo} := |O0]|.2 (T3 + T).

Note that T} < |20 —1|os+[|200—1I s < 2A, Ts < ||0—01| || —F0|lse < 2/|O0]] 4 || —S0] |0 <

A
2\. Thus, |[© — O||sc < 4][O0]|., A which implies ||© — Op||o < 4/|O0|| 2, .
Let t, = ||© — O/, 0i = 6 — 60 = 0\ + 6, where 6\)) = 0,;,1(10,;] > 2t,) — 69,617 =

ijr 2

N A N 1 2 1 2
0,;1(10;5] < 2t,). Then |69/, > 6], = 1169 + 6|1 + 110210 > 11621 — 18811 + (16311,

so that [[62]]; < [|16%]], and hence ||6;|l, < 2[[61"]|;. By the sparsity assumption, |[6\"]]
j=1 105 1(1635] = 2tn) — 05 < 30, 10511(10] < 2tn) + 3251 1031(1055] > 2tn) — 051(163] >
2tn) < (2t)' 7 350 10517 + D250 105 — 051110551 = 2tn) + 325 105111(10:5] = 2t) — 1(163] >

2t)| < (2t)' " s0(p) +tn Y5y T(OY] = tn) + 305 10%11(16% — 2ta| < 16— 0%]) < (2£0)'s0(p) +
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GRAPHICAL MODELS

tn D 0017+ 225 1051 (102] < 3tn) = (2t0)' " s0(p) + £, Ts0(p) + (3ta)' "9s0(p) = (1 +2177+
31=9)tl=45y(p). Combine the above to conclude: [||© — Oql|le, = max;||d]); < 2(1 + 2179 +
3179 (4]|0|[2,) ' " s0(p) < Cso(p)A 7.

Thm: ||© — G|l < CL M %sy(p)(222)* 2" with high probability.

Proof: One can show that || — O||ee < Cay/ k’% with high probability. Take A\ = CoM /™82,

n

Directed acyclic graphs

Def: G = (V,E),V ={1,2,-- p},ECV xV,i—j:(i,5) € E,i ¢ j: (i,j)&(j,i) € E. A DAG
is a graph whose all edges are directed and that contains no cycles.

Parents of node j : pa(j) = {i € V : i — j}; adjacency set: adj(j) ={ie€V :j—iori—j}. A
distribution f factorizes with regard to G iff f(x) = [[,cy f(@o|Zpa(v))-

Undirected graph x — y — z, orientation: * -y — 2,2 >y > z,2 <y = x,2 >y + x. (0) =
f(@,y,2) = f(@)f(ylx) f(zly), (1) = f(2) fyle) f(zly), (2) = f(2)f(wl2) f(xly) = Fu)f(2ly) f(@]y) =
f@)f(ylz)f(zly), 3) = fw)f(zly) f(@ly) = f(x)f(zly) f(ylx), (4) = f(@)f(2)f(ylz, 2).

Thm: Two DAGs are Markov equivalent iff they have the sae skeleton and V-structures. Skeleton:
undirected graph replacing all directed edges with undirected ones. V-structures: unshielded col-
lider (z — z <y but . — x — y).

PDAG (Partially DAG): All V-structures are oriented.

Completed PDAG: Besides V-structures, oriented as much as possible.

Def: d-separation: A path is d-separated by s set of notes Z iff it contains either: 1) a chain
i - m — jorforki <+ m — jst. m € Z;2) a V-structure i - m < j s.t. m € Z and no
descendant of m belongs to Z. Z d-separates x from y iff Z d-separates every path from z to y.
Faithfulness: A prob dist P on RP is faithful to G iff Vi,j € Vi # j, & S C V, X, Il X;|Xs < i&j
are d-separated by S.

PC algorithm: for estimating a DAG from the data.

Stage 1: Find the skeleton. Check if x; 1L z;|S,VS C V\{4,j}.

Part 1: | = 0, G = complete graph.

Choose (i,7) € E(G) s.t. |adj(G,i)\{:i}| > I.

—— Choose K C adj(G,i)\{j} with |K|=1.

—— —— Test if z; 1L x;|zk. If yes, then a) delete (i, j) from E(G); b) save K in S(7,7) and S(j, ).
—— until no such K is left.

— i+ 141

until no such (7, j) is left.

Prop: Vi,j € V,K C V\{i,j}, heK, PijIK = pi,le\{zh}_pi,h\K\{h}Zj,th\{h}' 7-transform: Z(’i,j|K) —
\/(1_P1:,1L\K\{h,})(1_pj,lz\K\{h})

%log(igﬁ), reject Ho : pijie = 0if \/n— |K|—3Z(i,j|K) > & (1 - %).

Stage 2: Extend the skeleton to a CPDAG. V nonadj ¢ and j with common neighbor k&,
R 0): If k # S(i,7), then i « k — j. Orient as many edges as possible in the PDAG.
R 1): Away from V-structures. j — k whenever ¢ — j — k,i — x — k.

R 2): Away from cycles: ¢ — j whenever i — k — j,i — j.
R 3): Double triangle: i — j whenever i — k — j,i — 1 — 5,4 — j.
Complexity: worse case: O(n(p?V p?)) where |adj(i)| < q.
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RANDOM FORESTS

10 Random Forests

e Decision trees
Idea: Partition feature space sequentially, each time by a single variable.

Parameters: splittig variables/points, tree topology, decision on each leaf.

¢ Regression trees
Given partitions {Ry, -+, Ry}, f(2) = Zf‘le eml(z € Ryy).
ém = ave(y;|z; € Ry).
Greedy strategy: Define Ry(j,s) = {z : z; < s}, Ra(j,8) = {x : x; > s}.
(7.8) = argming  {mine, 3y, 5 05— €002 + ity 106 — 2%}
¢ = ave(yilz; € R1(j,8)), ¢2 = ave(yi|z; € Ra(j,$)).
Regularization: pre-pruning, cost-complexity pruning.
Cost function: @,,(T) = Nl—m > wicr,, (Ui = ém)? where Ny, = #{x; € R,.}.
Model complexity: |T'| = # regions.
Criterion: Co(T) = S NWQu (T) + a|T).

m=1

o C(lassification trees
Decision on each R,,: majority vote. k(m) = argmax, pni where ppr = 5= >, cp I(yi = k).
Measure of node impurity: misclassification error: =3 _p I(y; # k(m)) = 1 — Pm k(m)-
Gini-Simpson index: Z(Lk):j#k Py Py, = 1= > Do, -
Shannon index/cross-entropy/deviance: —, P, 108D, -

e Ensemble learning
Two types:
1) strongly dependant, sequentially trained (boosting);
2) weekly dependant, parallelly trained (bagging, RF).
Bagging (bootstrap aggregation): Traning data (x;,;),7 = 1,--- ,n, generate B bootstrap samples.
1) regression: fuae(z) = = S fr(e);

2) classification: H(z) = argmax;, Zle I(hj(x) # k).

o Random forests
A varient of bagging on decorrelated trees as base learners, with additional randomization step:

choose randomly m < p features before each splitting.
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REINFORCEMENT LEARNING

11 Reinforcement Learning

o General scenario of RL
Agent — (action) — Environment — (state, reward) — Agent. Tradeoff between exploration and
exploitation. Goal: Determine the optimal policy (course of actions) to maximize its reward.
Settings: Environment model known — Planning; unknown — Learning.
Basic assumption: Markov decision process (MDP).
State s € S, initial state sg, action a € A, transition probabilities P(s’|s,a), reward probabilities
P(rls,a). s¢ = ay/Te = St41 —> Qi1 /Te41 — Spp2 —> <o+
Def: Policy 7 : S — D(A) (distribution on A). Deterministic if 7(s)(a) = 1 for some a. Stationary
7, not dependant on t¢; non-stationary ;.
Return: finite horizon T' < co: ZtT:o (s, m(st)), T =000 Y g g Vo7 (e, m(8¢)).
Policy value (expected return): 7' < oo : Vi (s) = EatNﬁ(st)(ZtT:O (8¢, at)|so = $);
T =00: Egn(s) (D reoVr(se,ar)|so =) (0 <y <1).
Optimal policies: 7* is optimal if Vr&s € S, Vi« (s) > Vi (s).
Def: State-action value function: Q. (s,a) = E(r(s,a) + vV (s1)|so = s,a0 = a) (first take action a
+ then follow policy ).
Thm: (Policy improvement) V policy 7,7, [Vs € S, Equn/(s)@x(5,0) > Eqrn(sQx(s,a)] = [Vs €
S, Ve (s) > Vi(s)].
Proof: LHS Vi($) = Eaur(s)@x(5,0) < Eqor(9)Qn(5,a) = Eaur(s)(r(s,a) + vYVr(s1)|so = s) =
Eren() (1(8, )47 Bay o (51)@r (5, @) |80 = 8) < -+ < Egromr(s) (Cimg V' Er(st, ag) +77 Ve (s74) [0
=s). Let T — .
Corollary (Bellman’s optimality condition): 7 is optimal iff VV (s, a) with 7(s)(a) > 0,a € argmax,, . 4
Qr(s,a).
Thm: Any finite MDP admits an optimal deterministic policy.
Proof: Consider the deterministic policy 7* maximizing . Vz(s), 7* exists since finitely many.
If 7 were not optimal, then it could be imporved by some s with 7(s) € argmax, . ,Q~(s,a’).
Bellman’s equations: 1) For the optimal policy value V*(s) = Q*(s,7*(s)), V*(s) = max,ca(Er(s,a)+
YD owes P(8'|s,a)V*(s")); 2) For general Vi (s), Vi(s) = Eqynr(s)7(8,a1)+7 Y e P(s'[s,7(s)) Ve (s').
In matrix form, V.= R+ PV or V = (I —yP)"'R.
Why I — ~«P invertible? P stachastic matrix, ||P||.c = 1, and hence ||7P||s < |[|[7P]]oc =7 < 1.

¢ Planning algorithms
Let ®(V) = max, (R, +vP;V).
Value iteration algorithm:
V =V, While [V —®(V)[| > e do V « &(V)
Thm: Converges VVj.
Q-learning:
Sample a new state s’; update policy values by Q(s, a) < (1—a)Q(s, a)+a(r(s,a)+ymax,c4Q(s",a’))
(stochastic approximation).

Thm: Converges for finite MDPs whenever >~ ay(s,a) = co and >, a?(s,a) < oo.
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