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GAUSS-JORDAN 消元法

1 Gauss-Jordan 消元法

1.1 问题

1. 是否存在二次函数 f(x) = ax2 + bx+ c, 其图像经过下述 4 个点: A(1, 2), Q(−1, 3),M(−4, 5), N(0, 2)?

2. 用 Gauss 消元法解以下方程组, 并用向量表示解的集合:



x1 − 2x2 + 3x3 − 4x4 = 4

x2 − x3 + x4 = −3

x1 + 3x2 − 4x4 = 1

−7x2 + 3x3 + x4 = −3

.

3. 某食品厂有四种原料 A,B,C,D. 问能否用这四种原料配制含脂肪 5%, 碳水化合物 12%, 蛋白质 15% 的食品?

单位: % A B C D
脂肪 8 6 3 2

碳水化合物 5 25 10 15
蛋白质 15 5 20 10

4. a 为何值时, 线性方程组


x1 − 4x2 + 2x3 = −1

−x1 + 11x2 − x3 = 3

3x1 − 5x2 + 7x3 = a

有解? 当有解时, 求出它的所有解.

5. 解下述线性方程组:



(1 + a1)x1 + x2 + x3 + · · ·+ xn = b1

x1 + (1 + a2)x2 + x3 + · · ·+ xn = b2

· · ·

x1 + x2 + x3 + · · ·+ (1 + an)xn = bn

, 其中 a1a2 · · · an ̸= 0, 且 1

a1
+

1

a2
+ · · ·+ 1

an
̸= −1.

6. (1) 求复矩阵 A =


1 −i −1

2 2 −2

i 1 + i −i

 的行简化阶梯型矩阵 rref(A); (2) 求齐次方程组 AX = 0 在复数域上的解集合;

(3) 求齐次方程组 AX = 0 在实数域上的解集合; (4) 当 y1, y2, y3 满足什么关系时, 方程组 AX = (y1, y2, y3)
T 有解?

7. 设 α1 = (1, 1, 4), α2 = (−2, 1, 5), α3 = (a, 2, 10), β = (1, b,−1). 当 a, b 取何值时, 向量 β 能被 α1, α2, α3 线性表出?
何时表示系数唯一?

8. 向量组 α1, · · · , αs线性无关, β =
s∑

j=1

bjαj . 如果 bi ̸= 0,证明用 β 替换 αi得到的向量组 α1, · · · , αi−1, β, αi+1, · · · , αs

也线性无关.
9. 用向量运算的性质证明: 若一组向量 α1, · · · , αs 线性表出某个向量 β 的方式唯一 (不唯一), 则 α1, · · · , αs 表出任何

向量–如果能表出的话, 方式都唯一 (不唯一).
10. 求单叶双曲面 x2 + y2 − z2 = 1 上的所有直线.
11. 用 Q(

√
3) 表示从全体有理数及

√
3 出发, 反复作加减乘除四则运算能得到的所有数的集合, 称为由

√
3 生成的数

域. (1) 证明 Q(
√
3) = {a+ b

√
3 : a, b ∈ Q}; (2) 数域 Q(

√
3) 中的每个数写成 a+ b

√
3, a, b ∈ Q 的方式唯一.

12. 用 Z(
√
−5) 表示从全体整数及

√
−5 出发, 通过加乘二则运算能得到的所有数的集合, 称为由

√
−5 生成的整环. 证

明在此环中, 不可约数和素数不等价.

1.2 解答

1. 直接代入求解



a+ b+ c = 2

a− b+ c = 3

16a− 4b+ c = 5

c = 2

, 发现无解.
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GAUSS-JORDAN 消元法

2.


1 −2 3 −4 4

0 1 −1 1 −3

1 3 0 −4 1

0 −7 3 1 −3


3⃝− = 1⃝
−→


1 −2 3 −4 4

0 1 −1 1 −3

0 5 −3 0 −3

0 −7 3 1 −3


3⃝− = 5 ∗ 2⃝

4⃝+ = 7 ∗ 2⃝
−→


1 −2 3 −4 4

0 1 −1 1 −3

0 0 2 −5 12

0 0 −4 8 −24


4⃝+ = 2 ∗ 3⃝

−→


1 −2 3 −4 4

0 1 −1 1 −3

0 0 2 −5 12

0 0 0 −2 0

⇒ (x1, x2, x3, x4) = (−8, 3, 6, 0).

3. 注意 A,B,C,D 的比例和为 1, 因此


1 1 1 1 1

8 6 3 2 5

5 25 10 15 12

15 5 20 10 15



2⃝− = 8 ∗ 1⃝

3⃝− = 5 ∗ 1⃝

4⃝− = 15 ∗ 1⃝
−→


1 1 1 1 1

0 −2 −5 −6 −3

0 20 5 10 7

0 −10 5 −5 0


3⃝+ = 10 ∗ 2⃝

4⃝− = 5 ∗ 2⃝
−→


1 1 1 1 1

0 −2 −5 −6 −3

0 0 −45 −50 −23

0 0 30 25 15


4⃝+ =

2

3
∗ 3⃝

−→


1 1 1 1 1

0 −2 −5 −6 −3

0 0 −45 −50 −23

0 0 0 −25

3
−1

3

, 因此解是 (
7

25
,
16

75
,
7

15
,
1

25
).

4.


1 −4 2 −1

−1 11 −1 3

3 −5 7 a


2⃝+ = 1⃝

3⃝− = 3 ∗ 1⃝
−→


1 −4 2 −1

0 7 1 2

0 7 1 a+ 3

. 因此有解当且仅当 a = −1, 通解是


x1 = −18

7
x3 +

1

7

x2 = −1

7
x3 +

2

7

.

5. 令 y = x1 + x2 + · · · + xn, 原方程组改写为



y + a1x1 = b1

y + a2x2 = b2

· · ·

y + anxn = bn

⇒



x1 =
b1 − y

a1

x2 =
b2 − y

a2

· · ·

xn =
bn − y

an

. 全部相加得到关于 y 的一元

一次方程, 解得 y =
1

1 + 1
a1

+ 1
a2

+ · · ·+ 1
an

n∑
i=1

bi
ai

. 代入上式得到原线性方程组的解.

6. (1)


1 −i −1

2 2 −2

i 1 + i −i


2⃝− = 2 ∗ 1⃝

3⃝− = i ∗ 1⃝
−→


1 −i −1

0 2 + 2i 0

0 i 0

 3⃝− =
i

2 + 2i
∗ 2⃝

−→


1 −i −1

0 2 + 2i 0

0 0 0

 2⃝∗ =
1

2 + 2i−→


1 −i −1

0 1 0

0 0 0

.

(2) (x1, x2, x3) = {(t, 0, t) : t ∈ C}. (3) (x1, x2, x3) = {(t, 0, t) : t ∈ R}. (4) 将 A 变换为行简化阶梯型矩阵后, 对应的常
数向量是 (y1,

y2 − 2y1
2 + 2i

, y3 −
1 + i

4
y2 +

1− i

2
y1), 因此只有当 y3 −

1 + i

4
y2 +

1− i

2
y1 = 0 时才有解.

7.


1 −2 a 1

1 1 2 b

4 5 10 −1


2⃝− = 1⃝

3⃝− = 4 ∗ 1⃝
−→


1 −2 a 1

0 3 2− a b− 1

0 13 10− 4a −5

 3⃝− =
13

3
∗ 2⃝

−→


1 −2 a 1

0 3 2− a b− 1

0 0
4

3
+

1

3
a −13

3
b− 2

3

. 因此,

当 a ̸= −4 或 a = −4, b = − 2

13
时, β 能被线性表出, 且对于前者表出系数唯一.

8. 设 k1α1+ · · ·+ki−1αi−1+kiβ+ki+1αi+1+ · · ·+ksαs = 0 ⇔ k1α1+ · · ·+ki−1αi−1+ki(b1α1+ · · ·+bsαs)+ki+1αi+1+

· · ·+ ksαs = 0 ⇔ (k1 + kib1)α1 + · · ·+ (ki−1 + kibi−1)αi−1 + kibiαi + (ki+1 + kibi+1)αi+1 + · · ·+ (ks + kibs)αs = 0. 由
线性无关性知 k1 + kib1 = · · · = ki−1 + kibi−1 = kibi = ki+1 + kibi+1 = · · · = ks + kibs = 0, 由于 bi ̸= 0, 因此 ki = 0, 进
一步得到 k1 = · · · = ks = 0, 这也意味着 α1, · · · , αi−1, β, αi+1, · · · , αs 线性无关.
9. 只需注意到表出某个向量 β 唯一 ⇔ 表出 0 向量唯一 ⇔(k1α1 + · · · ksαs = 0 ⇒ k1 = · · · = ks = 0).
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线性相关性, 秩

10. (x− z)(x+ z) = (1− y)(1+ y), 因此直线可以表示形式为

 x− z = k(1− y)

x+ z =
1

k
(1 + y)

, 即是

 x+ ky − z = k

kx− y + kz = 1
. 特别

地, 当 y = ±1 时, z = ±x 也是位于该曲面上的直线.
11. (1)只需证明 {a+b

√
3 : a, b ∈ Q}对于加减乘除封闭. (2)只需证明

√
3不是有理数 (因为 a1+b1

√
3 = a2+b2

√
3 ⇔

√
3 =

a1 − a2
b2 − b1

∈ Q). 用反证法,
√
3 =

a

b
, gcd(a, b) = 1, 那么 a2 = 3b2 ⇒ 3|a⇒ 9|a2 ⇒ 3|b2 ⇒ 3|b, 矛盾.

12. 类似可知 Z(
√
−5) = {a+ b

√
−5 : a, b ∈ Z}. 容易证明 2+

√
−5 是不可约数: 2+

√
−5 = (a+ b

√
−5)(c+ d

√
−5) ⇒

9 = (2+
√
−5)(2−

√
−5) = (a+b

√
−5)(a−b

√
−5)(c+d

√
−5)(c−d

√
−5) = (a2+5b2)(c2+5d2)无解;但是 2+

√
−5|3×3

而 2 +
√
−5 ̸ |3, 因此不是素数.

2 线性相关性, 秩

2.1 问题

1. 对不同的 λ 取值, 讨论矩阵 A =


1 λ −1 2

2 −2 λ 5

1 2 −3 1

 的秩.

2. 判断以下向量组线性相关还是线性无关; 若线性相关, 试找出其中一个线性无关的部分组, 同时能线性表出向量组其

余的每个向量. (1) A 的列向量组; (2) A 的行向量组. A =


2 −1 1 −6 8

1 −2 −4 3 −2

−7 8 10 3 −10

4 −5 −7 0 5

.

3. 作初等行变换将矩阵 A =



2 −1 5 2 −1

4 −1 9 3 4

3 −2 8 −2 1

1 1 1 4 4

3 1 5 8 6


化为简化阶梯型矩阵, 再利用以上计算直接回答下列问题. (1) 求

A 列组的秩和一个极大无关组, 并用此极大无关组表出 A 的每个列向量. (2) 求 A 行空间的维数和一组基, 写出 A 的

各个行向量在此基下的坐标. (3) a, b 取何值时, 向量 (3, a, b, b, 3) 属于 A 的行空间?
4. 已知 α1, α2, α3, α4 线性无关, 试判断以下各向量组的线性相关性: (1) α1 +α2, α2 +α3, α3 +α4, α4 +α1; (2) α1, α2 −
α3, α1−α3+α4; (3) α1, α1+α2, α1+α2+α3, α1+α2+α3+α4; (4) α1+α4, α2+8α4, α2+5α3+α4, 3α1+7α2+α3, α1−α3.
5. 证明: 若向量组 I 能线性表出向量组 II, 且 rank(I) = rank(II), 则向量组 II 也能表出向量组 I.
6. 设向量组 α1, · · · , αr 能线性表出 β1, · · · , βs,并且有 βi = bi1α1+· · ·+birαr, ∀i = 1, 2, · · · , s. 证明若矩阵 B = (bij)s×r

列向量线性无关, 则 β1, · · · , βs 也能线性表出 α1, · · · , αr.
7. 若矩阵 A = (aij)n×n 满足 |aii| >

∑
j ̸=i

|aij |, ∀1 ≤ i ≤ n, 则称 A 是主对角占优矩阵. 证明主对角占优矩阵满秩.

8. 证明秩等式 rank
(
A O

O B

)
= rank(A) + rank(B) 和秩不等式 rank

(
A C

O B

)
≥ rank(A) + rank(B).

9. 已知矩阵


a1 a2 a3

b1 b2 b3

c1 c2 c3

 满秩, 求两直线 x− a3
a1 − a2

=
y − b3
b1 − b2

=
z − c3
c1 − c2

, x− a1
a2 − a3

=
y − b1
b2 − b3

=
z − c1
c2 − c3

的位置关系.

10. 设 W = {f(x)|f(1) = 0, f(x) ∈ R[x]n}, 这里 R[x]n 表示实数域 R 上的次数小于 n 的多项式添上零多项式构成的

线性空间. (1) 证明 W 是 R[x]n 的线性子空间; (2) 求 W 的维数和一组基.
11. 证明: 若数域 K 上的 n 阶方阵 A = (aij) 的主对角元 aii 均不为零, 则存在向量 X 使得 AX 的每个分量都不为零.

2.2 解答

1. 显然矩阵 A 的秩至少为 2(第 1 列和第 4 列线性无关), 至多为 3. 下面考虑第 2 列和第 3 列能否被第 1 列和第 4 列
线性表出. 先看第 2 列和最后两行, 知表出系数必然为 4 和 −2, 因此 λ = 0, 此时验证第 3 列知确实能被第 1 列和第 4
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列线性表出. 综上, λ = 0 时秩为 2, 否则为 3.
2. (1) 线性相关; 其中第 1 列、第 2 列和第 5 列构成线性无关组, 且 2α1 + 3α2 = α3, −5α1 − 4α2 = α4;
(2) 线性相关; 其中第 2 行、第 3 行和第 4 行构成线性无关组, 且 −3

2
β2 −

1

2
β3 = β1.

3. A 的简化阶梯型矩阵是 A =



1 0 2 0 3

0 1 −1 0 5

0 0 0 1 −1

0 0 0 0 0

0 0 0 0 0


. (1) 列秩是 3, 一个极大无关组是 β1, β2, β4, 且 β3 = 2β1 −

β2, β5 = 3β1 + 5β2 − β4. (2) 行空间维数和列秩相同, 一组基是 α1, α2, α4, 且 α3 = −31

9
α1 − 55

9
α2 +

17

9
α4, α5 =

−20

9
α1 −

23

9
α2 +

22

9
α4. (3) 仔细计算即可. a = 4, b = 2.

4. (1) 线性相关; (α1 + α2)− (α2 + α3) + (α3 + α4)− (α4 + α1) = 0. (2) 线性无关. (3) 线性无关. (4) 线性相关; 因为
这有五个向量却只有四个自由度.
5. 设 β1, · · · , βs 是组 II极大线性无关组. 任取组 I向量 α,由于组 I能表出 β1, · · · , βs, α,从而 rank(β1, · · · , βs, α) ≤ s,
即 β1, · · · , βs, α 线性相关. 由于 β1, · · · , βs 线性无关, 因此它们能表出 α.
6. 只需证明能表出 α1. 利用高斯消元法去解方程 βi1 = bi1α1 + · · · + birαr, 由于 B 列满秩, 因此其简化阶梯型矩阵必

然可写成

[
Ir×r

0(s−r)×r

]
(可用递推法或归纳法证明之), 从而 α1 能被 β1, · · · , βs 线性表出.

7. 反证法. 假设 A 的列向量组线性相关, 那么存在不全为 0 的系数使得 k1α1 + k2α2 + · · · + knαn = 0. 我们不妨设
在这 n 个系数里面 k1 的绝对值最大, 那么就有 k1a11 + k2a12 + · · ·+ kna1n = 0. 但是 |k1a11 + k2a12 + · · ·+ kna1n| ≥
|k1a11| − |k2a12| − · · · − |kna1n| ≥ |k1a11| − |k1|(|a12|+ · · ·+ |a1n|) > 0, 矛盾. 因此 A 满秩.
8. (1) 设 A 的一个列极大线性无关组是 αi1 , · · · , αir , B 的一个列极大线性无关组是 βj1 , · · · , βjs . 利用线性无关的定义

可以验证

(
αi1

0

)
, · · · ,

(
αir

0

)
,

(
0

βj1

)
, · · · ,

(
0

βjs

)
线性无关, 且可以分别用对应小矩阵 A,B 的相同系数表出其他大矩

阵的列向量, 因此这是一个大矩阵的列极大线性无关组, 有第一个秩等式.

(2) 利用线性无关的定义可以验证
(
αi1

0

)
, · · · ,

(
αir

0

)
,

(
γj1

βj1

)
, · · · ,

(
γjs

βjs

)
线性无关, 其中 γjk 是矩阵 C 对应于 jk 的

列向量, 因此大矩阵的秩至少是 rank(A) + rank(B), 有第二个秩不等式. 这里我们无法判断这是不是一个大矩阵的列

极大线性无关组, 因此可以严格取到大于号. 一个例子是
(
0 1

0 0

)
, 其中 A = (0), B = (0), C = (1).

9. 由矩阵满秩知 (a1 − a2, b1 − b2, c1 − c2) 和 (a2 − a3, b2 − b3, c2 − c3) 线性无关 (用第一列减第二列和用第二列减第三
列), 因此不平行. 再检查是否相交, 只需验证 x3 + k(x1 − x2) = x1 + t(x2 − x3), x = a, b, c 对于 k, t 是否有解. 由于矩
阵满秩, 合并同类项知该方程系数必须满足 t+ 1 = k − 1 = t+ k = 0, 因此 t = −1, k = 1. 从而两直线相交.
10. (1)容易证明对 ∀f(x), g(x) ∈W ⇒ af(x)+bg(x) ∈W ,因此是线性子空间. (2)令 f(x) = a0+a1x+· · ·+an−1x

n−1,
f(1) = 0 ⇒ a0 + a1 + · · · + an−1 = 0, 因此 f(x) = a1(x − 1) + a2(x

2 − 1) + · · · + an−1(x
n−1 − 1). 下面我们只需证明

x− 1, x2 − 1, · · · , xn−1 − 1 确实是 W 的一组基, 而其线性无关性是显然的, 所以 dimW = n− 1.
11. 注意到 Wi = {X ∈ Kn : (ai1, · · · , ain)X = 0}, i = 1, 2, · · · , n 都是 Kn 的 n− 1 维子空间, 由于有限个 n− 1 维子

空间张不满 n 维全空间, 从而存在 X0 ∈ Kn\(W1 ∪W2 ∪ · · · ∪Wn), 此时 AX0 的每个分量都不为零.

3 线性方程组解的结构

3.1 问题

1. 已知矩阵 A = [α1, α2, · · · , α5] 与


2 1 2 5 3

2 2 4 8 7

3 1 2 6 3

 的行向量组等价, 且 α2 = (2, 1, 2, 1)T , α5 = (7, 3, 7, 3)T . 又知方

程组 AX = β 的一个解为 X = (1, 1,−1, 0, 1)T , 这里 β = (7, 5, 7, 4)T . (1) 写出矩阵 A 及其行简化阶梯形矩阵 J ; (2)
求 A 行空间的一组基, 并确定当 a, b 为何值时, (5, 3, 6, a, b) 落在 A 的行空间里; (3) 求方程组 AX = β 的解空间.
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2. 讨论下列方程组的解空间: (1)



x1 + x2 − 2x3 + 2x4 = 0

3x1 + 5x2 + 6x3 − 4x4 = 0

4x1 + 5x2 − 2x3 + 3x4 = 0

3x1 + 8x2 + 24x3 − 19x4 = 0

; (2)



x1 + x2 = 0

x1 + x2 + x3 = 0

· · · · · ·

xn−2 + xn−1 + xn = 0

xn−1 + xn = 0

.

3. 讨论下列方程组的解空间: (1)



8x1 + 6x2 + 3x3 + 2x4 = 5

−12x1 − 3x2 − 3x3 + 3x4 = −6

4x1 + 5x2 + 2x3 + 3x4 = 3

λx1 + 4x2 + x3 + 4x4 = 2

; (2)



−6x1 + 8x2 − 5x3 − x4 = 9

−2x1 + 4x2 + 7x3 + 3x4 = 1

−3x1 + 5x2 + 4x3 + 2x4 = 3

−3x1 + 7x2 + 17x3 + 7x4 = λ

.

4. A 是 m× n 矩阵, b 是 m× 1 矩阵. 证明线性方程组 ATAx = AT b 总有解.
5. A,B 都是 m× n 矩阵, 线性方程组 AX = 0 和 BX = 0 同解. 问 A,B 的列向量组是否等价、行向量组是否等价.
6. 证明: AX = 0 有强非零解 (解向量的每个系数都不为零) 的充要条件是 A 的任一列向量均可表示为其余列向量的

线性组合.

7. 设线性方程组 AX = b 中矩阵 A 的秩等于矩阵 B =

[
A b

bT 0

]
的秩. 证明该方程组有解, 并问其逆命题是否成立.

8. 设 A,B 是数域 K 上的 n 阶方阵, AX = 0, BX = 0 分别有 l,m 个线性无关的解向量. 证明: (1) (AB)X = 0 至少

有 max(l,m) 个线性无关的解向量; (2) 如果 l+m > n, 那么 (A+B)X = 0 必有非零解; (3) 如果 AX = 0 和 BX = 0

没有公共的非零解向量, 且 l +m = n, 那么 Kn 中的任一向量 α 都可以唯一的分解为 α = β + γ, 其中 β, γ 分别是

AX = 0 和 BX = 0 的解向量.
9. 设 A是 n阶方阵,证明: (1)若 Ak−1α ̸= 0, Akα = 0,那么 α,Aα, · · · , Ak−1α线性无关; (2) rank(An) = rank(An+1).
10. 判断方的整系数线性方程组如果模任一素数的意义下都有解, 那么它是否在整数环上有解.
11. 给定复系数线性方程组 AX = b, 其中 A 满秩. 假设矩阵 I +A 的每行元素的模的和小于 q, 其中 0 < q < 1. 设 X0

是 Cn 中任一向量, 归纳定义 Xm+1 = (A+ I)Xm − b. 证明序列 Xm 收敛到方程组 AX = b 的解.
12. 已知矩阵 A 的列数与矩阵 B 的行数相等. 记 A 的解空间为 W , B 的列空间为 V . 证明 rank(B) = rank(AB) 当

且仅当 V ∩W = {0}.

3.2 解答

1. (1) 容易得到 α1 − α3 = (−2, 1,−2, 0)T , 并求出题给定的矩阵行空间一组基是 (1, 0, 0, 1, 0), (0, 1, 2, 3, 0), (0, 0, 0, 0, 1).
考虑其前三个分量, 由能被这组基表出知 α3 = 2α2 = (4, 2, 4, 2)T , α1 = (2, 3, 2, 2)T , 从而 α4 = (8, 6, 8, 3). 因此

A =


2 2 4 8 7

3 1 2 6 3

2 2 4 8 7

2 1 2 5 3

 , J =


1 0 0 1 0

0 1 2 3 0

0 0 0 0 1

0 0 0 0 0

 .
(2) 一组基为 (1, 0, 0, 1, 0), (0, 1, 2, 3, 0), (0, 0, 0, 0, 1). 考察各系数, 知当 a = 14, b ∈ R 时, 该向量落在 A 的行空间里.
(3)先求出 AX = 0的解,即 (α1, α2, 2α2, α1+3α2, α5)X = 0,其中 α1, α2, α5线性无关. 通解为 (t1, 3t1−2t2, t2,−t1, 0)T ,
t1, t2 ∈ R 是自由变元. 因此 AX = β 的通解是 (t1+1, 3t1 − 2t2 +1, t2− 1,−t1, 1)T , 写成解空间是 {t1(1, 3, 0,−1, 0)T +

t2(0,−2, 1, 0, 0)T + (1, 1,−1, 0, 1)T : t1, t2 ∈ R}.
2. (1) 通解是 x1 = 8x3 − 7x4, x2 = −6x3 + 5x4, 写成解空间是 {k1(8,−6, 1, 0)T + k2(−7, 5, 0, 1)T : k1, k2 ∈ R}.
(2) n = 3m 或 3m+ 1 时只有零解. n = 3m+ 2 时有非零解, 通解是 x3i = 0, x3i+1 = −xn, x3i+2 = xn, i = 1, 2, · · · ,m,
写成解空间是 {k(−1, 1, 0,−1, 1, 0, · · · , 0,−1, 1) : k ∈ R}.

3. (1)利用高斯消元得到


4x1 + 5x2 + 2x3 + 3x4 = 3

4x2 + x3 + 4x4 = 1

−3λx3 + 8λx4 = 16− 7λ

,因此 λ ̸= 0时有解,通解是 x1 =
1

λ
, x3 =

9λ− 16

5λ
−8

5
x2, x4 =

7
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4− λ

5λ
− 3

5
x2, 写成解空间是 {k(0, 5,−8,−3)T +

(
1

λ
, 0,

9λ− 16

5λ
,
4− λ

5λ

)T

: k ∈ R}.

(2) 利用高斯消元得到


−2x1 + 4x2 + 7x3 + 3x4 = 1

−2x2 − 13x3 − 5x4 = 3

0 = 2λ

, 因此 λ = 0 时有解, 通解是 x1 = −1

2
(7 + 19x3 + 7x4), x2 =

−1

2
(3 + 13x3 + 5x4), 写成解空间是 {k1(−19,−13, 2, 0)T + k2(−7,−5, 0, 2)T +

(
−7

2
,−3

2
, 0, 0

)T

: k1, k2 ∈ R}.

4. 先证明 rank(ATA) = rank(A). 首先显然 rank(ATA) ≤ rank(A), 其次 ATAx = 0 ⇒ xTATAx = 0 ⇒ ∥Ax∥22 = 0 ⇒
Ax = 0 ⇒ Ker(ATA) ⊂ Ker(A) ⇒ rank(ATA) ≥ rank(A). 接着, 由于 rank(ATA) ≤ rank(ATA,AT b) ≤ rank(AT ) =

rank(A) = rank(ATA) 知系数矩阵和增广矩阵秩相等, 因此方程有解.

5. 第 1 个结论不对, 比如 A =

(
1 0

0 0

)
, B =

(
1 0

1 0

)
. 第 2 个结论对. 若解空间 0 维, 则 A,B 均列满秩, 也都可以通

过初等行列变换得到其简化阶梯形矩阵

(
In×n

0(m−n)×n

)
, 因此等价. 其余情况, 设解空间 r ≥ 1 维, 任取 AX = 0 的一个基

础解系 X1, · · · , Xr 构成 n× r 矩阵 C. 考虑线性方程组 CTX = 0, 其解空间维数为 n− r = rank(A). 由于 CTAT = 0,
因此 A 的行空间是该解空间的一个子空间. 由于它们维数相等, 因此 A 的行空间就是该解空间. 同理 B 的行空间也是

该解空间.
6. 必要性. 设 X = (x1, · · · , xn)T 是强非零解, 则 αi =

∑
k ̸=i

(
−xk
xi

)
αk, ∀i = 1, · · · , n.

充分性. 不妨设 αi =
∑
k ̸=i

tkiαk, ∀i = 1, · · · , n, 则记 T =



1 −t12 −t13 · · · −t1,n−1 −t1,n
−t21 1 −t23 · · · −t2,n−1 −t2n

...
...

... . . . ...
...

−tn−1,1 −tn−1,2 −tn−1,3 · · · 1 −tn−1,n

−tn1 −tn2 −tn3 · · · −tn,n−1 1


, 从而

AT = 0. 由于 T 的任一主对角元均不为零, 从而存在 X0 使得 TX0 每个分量都不为零, 此即该强非零解.

7. (1) rank(A) ≤ rank(A, b) ≤ rank
[
A b

bT 0

]
= rank(B) = rank(A), 因此每一步都取等号, 从而方程组有解.

(2) 不成立, 考虑

 x1 + 2x2 = 1

3x1 + 4x2 = 3
, rank(A) = 2, 而 rank(B) = 3.

8. (1) n− rank(AB) ≥ max(n− rank(A), n− rank(B)) ≥ max(l,m).
(2) rank(A+B) ≤ rank(A) + rank(B) ≤ n− l + n−m < n, 因此 (A+B)X = 0 必有非零解.
(3)设 α1, · · · , αl与 β1, · · · , βm分别是 AX = 0, BX = 0线性无关的解. 考虑方程 λ1α1+· · ·+λlαl+µ1β1+· · ·+µmβm =

0, 则 λ1α1 + · · · + λlαl = −µ1β1 − · · · − µmβm 是 AX = 0 和 BX = 0 的公共解. 由题意知其必然为零向量, 又由
{αi}li=1, {βj}mj=1 线性无关性知 λ1 = · · · = λl = µ1 = · · · = µm = 0. 因此 α1, · · · , αl, β1, · · · , βm 整体线性无关. 又由于
l +m = n, 因此他们是 Kn 一组基, 从而任一向量都可唯一被它们线性表出, 相应的被表出的两部分也就对应了 β 和

γ. 唯一性可由 α = β1 + γ1 = β2 + γ2 ⇒ β1 − β2 = γ2 − γ1 是 AX = 0 和 BX = 0 的公共解 ⇒ β1 − β2 = γ2 − γ1 = 0

得到.
9. (1) 设 λ1α+ λ2Aα+ · · ·+ λkA

k−1α = 0, 两边左乘 Ak−1 知 λ1 = 0, 再左乘 Ak−2 知 λ2 = 0, 以此类推知线性无关.
(2) 显然 AnX = 0 ⇒ An+1X = 0. 若存在 An+1α = 0 但 Anα ̸= 0, 则根据 (1) 结论知 α,Aα, · · · , Anα 线性无关, 这是
n 维空间是不可能的. 因此 An+1 和 An 解空间相同, 从而 rank(An) = rank(An+1).
10. 不一定, 一个反例是 4x = 2.
11. 记 ∥X∥为向量 X 元素模的最大值 (l∞ 范数). 则 ∥Xn−Xm∥ = ∥(A+ I)Xn−1− (A+ I)Xm−1∥ = ∥(A+ I)(Xn−1−
Xm−1)∥ < q∥Xn−1 −Xm−1∥, 因此由 Cauchy 收敛原理知 Xn 在 l∞ 范数意义下收敛 (有限维线性空间所有范数等价).
记极限值为 X∞, 两边求极限知 X∞ = (A+ I)X∞ − b⇔ AX∞ = b.
12. 注意到 rank(B) = rank(AB) ⇔ Ker(B) = Ker(AB).
“⇒”: 考虑 x ∈ V ∩W , 则可设 x = By. 由于 ABy = Ax = 0, 因此 y ∈ Ker(AB) = Ker(B) ⇒ By = 0 ⇒ x = 0.
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“⇐”: 显然 rank(AB) ≤ rank(B). 若 rank(AB) < rank(B), 则 Ker(AB) ̸= Ker(B), 即 ∃x ∈ Ker(AB) 但 x ̸∈ Ker(B),
此时 Bx ̸= 0, 但是 Bx ∈ V ∩W .

4 行列式 (1)

4.1 问题

1. 计算行列式: (1)

∣∣∣∣∣∣∣∣
x− 2 2 −2

2 x+ 1 −4

−2 −4 x+ 1

∣∣∣∣∣∣∣∣; (2)

∣∣∣∣∣∣∣∣∣∣
3 2 0 0

5 3 0 0

−12 −4 3 4

3 x 5 7

∣∣∣∣∣∣∣∣∣∣
.

2. 计算行列式

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a2 a3 · · · an

b2 1 0 · · · 0

b3 0 1 · · · 0
...

...
... . . . ...

bn 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

3. 计算行列式 Dn =

∣∣∣∣∣∣∣∣∣∣∣

1 cosϕ1 cos 2ϕ1 · · · cos(n− 1)ϕ1

1 cosϕ2 cos 2ϕ2 · · · cos(n− 1)ϕ2

...
...

... . . . ...
1 cosϕn cos 2ϕn · · · cos(n− 1)ϕn

∣∣∣∣∣∣∣∣∣∣∣
.

4. 计算行列式 Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α β

γ α β
. . . . . . . . .

γ α β

γ α

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∈ det(Rn×n), 其中 α2 − 4βγ > 0.

5. (1) 计算行列式 Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a b b · · · b

c a b · · · b

c c a · · · b
...

...
... . . . ...

c c c · · · a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
; (2) 计算行列式 En =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 b b · · · b

c a2 b · · · b

c c a3 · · · b
...

...
... . . . ...

c c c · · · an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

6. 计算行列式

∣∣∣∣∣∣∣∣∣∣
1 + x21 x1x2 x1x3 x1x4

x2x1 1 + x22 x2x3 x2x4

x3x1 x3x2 1 + x23 x3x4

x4x1 x4x2 x4x3 1 + x24

∣∣∣∣∣∣∣∣∣∣
.

7. 计算行列式

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 − a1 x2 x3 · · · xn

x1 x2 − a2 x3 · · · xn

x1 x2 x3 − a3 · · · xn

· · · · · · · · · . . . ...
x1 x2 x3 · · · xn − an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, 其中 a1a2 · · · an ̸= 0.

8. 计算行列式 Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cosα 1 0 · · · 0 0

1 2 cosα 1 · · · 0 0

0 1 2 cosα · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 2 cosα 1

0 0 0 · · · 1 2 cosα

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∈ det(Rn×n).
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9. 计算行列式 Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

a1 + b1

1

a1 + b2
· · · 1

a1 + bn
1

a2 + b1

1

a2 + b2
· · · 1

a2 + bn...
... . . . ...

1

an + b1

1

an + b2
· · · 1

an + bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∈ det(Rn×n).

4.2 解答

1. (1)

∣∣∣∣∣∣∣∣
x− 2 2 −2

2 x+ 1 −4

−2 −4 x+ 1

∣∣∣∣∣∣∣∣ = (x− 2)(x+ 1)2 + 16 + 16− 4(x+ 1)− 16(x− 2)− 4(x+ 1) = x3 − 27x+ 54;

(2)

∣∣∣∣∣∣∣∣∣∣
3 2 0 0

5 3 0 0

−12 −4 3 4

3 x 5 7

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣3 2

5 3

∣∣∣∣∣ ∗
∣∣∣∣∣3 4

5 7

∣∣∣∣∣ = −1.

2. 用第一列减去第 i 列的 bi 倍, i = 2, 3, · · · , n, 得到

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 −
n∑

i=2

aibi a2 a3 · · · an

0 1 0 · · · 0

0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= a1 −

n∑
i=2

aibi.

3. 由高中三角函数知识知 cos kθ = 2k−1 cosk θ + Pk−2(cos θ), 其中 Pk−2 是 k − 2 次多项式. 因此通过初等列变换有

Dn = 2
(n−1)(n−2)

2

∣∣∣∣∣∣∣∣∣∣∣

1 cosϕ1 cos2 ϕ1 · · · cosn−1 ϕ1

1 cosϕ2 cos2 ϕ2 · · · cosn−1 ϕ2

...
...

... . . . ...
1 cosϕn cos2 ϕn · · · cosn−1 ϕn

∣∣∣∣∣∣∣∣∣∣∣
= 2

(n−1)(n−2)
2

∏
1≤j<i≤n

(cosϕi − cosϕj).

4. 若 βγ = 0, 则行列式为 αn. 对于一般情形, 按第一行展开得到 Dn = αDn−1−βγDn−2, 且有初值条件 D1 = α,D2 =

α2 − βγ, 然后用数列的特征值和特征公式设 Dn = A

(
α+

√
α2 − 4βγ

2

)n

+B

(
α−

√
α2 − 4βγ

2

)n

, 代入 n = 1, 2 解

出 A 和 B, 得到 Dn =
(α+

√
α2 − 4βγ)n+1 − (α−

√
α2 − 4βγ)n+1

2n+1
√
α2 − 4βγ

.

5. (1) 用倒数第一行减去倒数第二行, 然后用倒数第二行减去倒数第三行, 以此类推, 得到

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a b b · · · b b

c− a a− b 0 · · · 0 0

0 c− a a− b · · · 0 0

0 0 c− a · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · c− a a− b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

按最后一列展开, 知 Dn = b(−1)n+1(c−a)n−1+(a− b)Dn−1. 初始条件是 D1 = a, 因此知 Dn =
b(a− c)n − c(a− b)n

b− c
.

(2) 按第 n 列拆项, 得 En =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 b b · · · b+ 0

c a2 b · · · b+ 0

c c a3 · · · b+ 0
...

...
... . . . ...

c c c · · · b+ (an − b)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 b b · · · b

c a2 b · · · b

c c a3 · · · b
...

...
... . . . ...

c c c · · · b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ (an − b)En−1 = b(a1 − c)(a2 −
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行列式 (1)

c) · · · (an−1 − c) + (an − b)En−1; 按第 n 列拆项 (或由对称性), 得 En = c(a1 − b)(a2 − b) · · · (an−1 − b) + (an − c)En−1.

两式联立得 En =
bf(c)− cf(b)

b− c
, 其中 f(x) = (a1 − x)(a2 − x) · · · (an − x).

6. 法 1(拆项法):

∣∣∣∣∣∣∣∣∣∣
1 + x21 x1x2 x1x3 x1x4

x2x1 1 + x22 x2x3 x2x4

x3x1 x3x2 1 + x23 x3x4

x4x1 x4x2 x4x3 1 + x24

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1 + x21 x1x2 x1x3 x1x4

0 + x2x1 1 + x22 x2x3 x2x4

0 + x3x1 x3x2 1 + x23 x3x4

0 + x4x1 x4x2 x4x3 1 + x24

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1 x1x2 x1x3 x1x4

0 1 + x22 x2x3 x2x4

0 x3x2 1 + x23 x3x4

0 x4x2 x4x3 1 + x24

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
x21 x1x2 x1x3 x1x4

x2x1 1 + x22 x2x3 x2x4

x3x1 x3x2 1 + x23 x3x4

x4x1 x4x2 x4x3 1 + x24

∣∣∣∣∣∣∣∣∣∣
,然后再依次拆第 2、3、4列,只需注意到若两列成比例则行列式为 0,因此最后只剩下五

项:

∣∣∣∣∣∣∣∣∣∣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣
x21 0 0 0

x2x1 1 0 0

x3x1 0 1 0

x4x1 0 0 1

∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣
1 x1x2 0 0

0 x22 0 0

0 x3x2 1 0

0 x4x2 0 1

∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣
1 0 x3x1 0

0 1 x3x2 0

0 0 x23 0

0 0 x3x4 1

∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣
1 0 0 x4x1

0 1 0 x4x2

0 0 1 x4x3

0 0 0 x24

∣∣∣∣∣∣∣∣∣∣
,原行列式是 1+x21+x

2
2+x

2
3+x

2
4.

法 2(加边法):

∣∣∣∣∣∣∣∣∣∣
1 + x21 x1x2 x1x3 x1x4

x2x1 1 + x22 x2x3 x2x4

x3x1 x3x2 1 + x23 x3x4

x4x1 x4x2 x4x3 1 + x24

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 x2 x3 x4

0 1 + x21 x1x2 x1x3 x1x4

0 x2x1 1 + x22 x2x3 x2x4

0 x3x1 x3x2 1 + x23 x3x4

0 x4x1 x4x2 x4x3 1 + x24

∣∣∣∣∣∣∣∣∣∣∣∣∣
, 然后用第 i+ 1 行减去第 1 行

的 xi 倍, i = 1, 2, 3, 4, 得到

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 x2 x3 x4

−x1 1 0 0 0

−x2 0 1 0 0

−x3 0 0 1 0

−x4 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1 + x21 + x22 + x23 + x24.

7. 采用第 6 题的法 1(拆项法), 最后剩下 n+ 1 项:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−a1 0 0 · · · 0

0 −a2 0 · · · 0

0 0 −a3 · · · 0
...

...
... . . . ...

0 0 0 · · · −an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 0 0 · · · 0

x1 −a2 0 · · · 0

x1 0 −a3 · · · 0
...

...
... . . . ...

x1 0 0 · · · −an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−a1 x2 0 · · · 0

0 x2 0 · · · 0

0 x2 −a3 · · · 0
...

...
... . . . ...

0 x2 0 · · · −an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, · · · , 它们分别是 (−1)na1a2 · · · an, (−1)n−1x1a2 · · · an, (−1)n−1a1x2 · · · an, · · · , 整理得到原

行列式为 (−1)n−1a1a2 · · · an

[(
n∑

i=1

xi
ai

)
− 1

]
.

8. 先计算 n = 1 时, D1 = cosα; n = 2 时, D2 = cos 2α; 因此可以猜测 Dn = cosnα. 然后用数学归纳法, 对第一行展
开得到 Dn+1 = 2 cosαDn −Dn−1 = cos(n+ 1)α, 知该假设成立.
9. 法 1: 将第 1 行至第 n− 1 行减去第 n 行, 并提出各行和各列公因子, 得

Dn =

∏n−1
i=1 (an − ai)∏n
j=1(an + bj)

∣∣∣∣∣∣∣∣∣∣∣∣∣

1

a1 + b1

1

a1 + b2
· · · 1

a1 + bn...
... . . . ...

1

an−1 + b1

1

an−1 + b2
· · · 1

an−1 + bn
1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
;
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行列式 (2)

再将第 1 列至第 n− 1 列减去第 n 列, 并提出各行和各列的公因子, 得

Dn =

∏n−1
i=1 (an − ai)

∏n−1
j=1 (bn − bj)∏n

j=1(an + bj)
∏n−1

i=1 (ai + bn)

∣∣∣∣∣∣∣∣∣∣∣∣∣

1

a1 + b1
· · · 1

a1 + bn−1

1

...
... . . . ...

1

an−1 + b1
· · · 1

an−1 + bn−1

1

0 · · · 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

按第 n 行展开得到递推式 Dn =

∏n−1
i=1 (an − ai)

∏n−1
j=1 (bn − bj)∏n

j=1(an + bj)
∏n−1

i=1 (ai + bn)
Dn−1, 并直接计算出 D2, 得

Dn =

∏
1≤j<i≤n(ai − aj)(bi − bj)∏n

i=1

∏n
j=1(ai + bj)

.

法 2: 若 ai = aj 或 bi = bj(i ̸= j), 即两行 (或两列) 相同, 则 Dn = 0. 因此 Dn 含有因子
∏

1≤j<i≤n

(ai − aj)(bi − bj). 将

Dn 的每一行的公分母都作为公因子提到行列式符号之外, 得 Dn =
1∏n

i=1

∏n
j=1(ai + bj)

D′
n. 显然 D′

n 也含有上述因子.

另一方面, 由于 D′
n 的 (i, j) 元为

∏
k ̸=j

(ai + bk), 所以每一个 ai 在 D′
n 的展开式中的次数均为 n − 1, 因此可设 Dn =

λ
∏

1≤j<i≤n

(ai − aj)(bi − bj). 为确定常数 λ, 我们不妨令 ai = −bi, i = 1, 2, · · · , n. 此时 D′
n 为对角行列式, 且 Dn =∏

i ̸=j

(ai − aj) =
∏

1≤j<i≤n

(ai − aj)(bi − bj) ⇒ λ = 1. 因此可得一样的结果.

5 行列式 (2)

5.1 问题

1. 当 λ 为何值时, 线性方程组

 2x1 − 3x2 = 7

5x1 + (4 + λ)x2 = 6
有唯一解, 此时用 Cramer 法则求解之.

2. 设 f(x)是复系数一元多项式,且对于任意整数 n有 f(n)仍是整数. 证明或否定: (1) f(x)系数都是有理数; (2) f(x)
系数都是整数.
3. 设数域 K 上 m× n 矩阵 H 的列向量为 α1, α2, · · · , αn. 证明: H 的任意 s(s ≤ min(m,n)) 列都线性无关当且仅当
齐次线性方程组 HX = 0 的任一非零解的非零分量数目大于 s.

4. 设 n ≥ 3, f1, f2, · · · , fn是次数≤ n−2的多项式,证明: 对 ∀a1, a2, · · · , an ∈ R,行列式

∣∣∣∣∣∣∣∣∣∣∣

f1(a1) f2(a1) · · · fn(a1)

f1(a2) f2(a2) · · · fn(a2)
...

... . . . ...
f1(an) f2(an) · · · fn(an)

∣∣∣∣∣∣∣∣∣∣∣
≡

0, 并举例说明条件 “次数 ≤ n− 2” 不可去.
5. 设 α1, · · · , αr 与 β1, · · · , βr 是 Rn 中的两个向量组, 其中 β1, · · · , βr 线性无关. 证明存在无穷多个实数 k, 使得向量
组 α1 + kβ1, · · · , αr + kβr 线性无关.

6. 计算行列式 Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 · · · n

n 1 2 · · · n− 1

n− 1 n 1 · · · n− 2
...

...
... . . . ...

2 3 4 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. 你能求出行列式 En =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a2 a3 · · · an

an a1 a2 · · · an−1

an−1 an a1 · · · an−2

...
...

... . . . ...
a2 a3 a4 · · · a1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
的通式吗?

7. 计算行列式 D1 =

∣∣∣∣∣∣∣∣∣∣
0 a b c

−a 0 d e

−b −d 0 f

−c −e −f 0

∣∣∣∣∣∣∣∣∣∣
和 D2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 741 886 114 514

−741 0 1919 810 2002

−886 −1919 0 520 1314

−114 −810 −520 0 220

−514 −2002 −1314 −220 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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8. 若矩阵 A = (aij)n×n 满足 |aii| >
∑
j≠i

|aij |, ∀1 ≤ i ≤ n, 则称 A 是主对角占优矩阵. 证明若 aii > 0, ∀1 ≤ i ≤ n, 则

det(A) > 0.

9. 设矩阵 A = (aij)n×n 满足 (1) aii > 0, ∀1 ≤ i ≤ n; (2) aij < 0, ∀1 ≤ i ̸= j ≤ n; (3)
n∑

i=1

aij = 0, ∀1 ≤ j ≤ n. 求矩阵

A 的秩.

10. 计算矩阵 A =


3 1 2 6 3

2 2 4 8 7

2 2 4 8 7

2 1 2 5 3

 的秩 r, 并计算其 r 阶非零子式的个数.

11. 试确定所有 3 阶 (0, 1) 行列式 (即所有元素只能是 0 或 1) 的最大值, 并给出证明和取到最大值的一个构造.
12. 设 W 是矩阵空间 Mn(K) 的一个子空间. 证明: 若 dim(W ) ≥ n2 − n+ 1, 则 W 中至少包含一个满秩的矩阵.

5.2 解答

1. 由 Cramer 法则,
∣∣∣∣∣2 −3

5 4 + λ

∣∣∣∣∣ ̸= 0 ⇔ λ ̸= −23

2
时有唯一解. x1 =

∣∣∣∣∣7 −3

6 4 + λ

∣∣∣∣∣∣∣∣∣∣2 −3

5 4 + λ

∣∣∣∣∣
=

7λ+ 46

2λ+ 23
, x2 =

∣∣∣∣∣2 7

5 6

∣∣∣∣∣∣∣∣∣∣2 −3

5 4 + λ

∣∣∣∣∣
=

−23

2λ+ 23
.

2. (1)设 f(x) = a0+a1x+· · ·+amxm(am ̸= 0). 取 xk = k代入,得到线性方程组



a0 + a1x0 + · · ·+ amx
m
0 = f(x0),

a0 + a1x1 + · · ·+ amx
m
1 = f(x1),

· · ·

a0 + a1xm + · · ·+ amx
m
m = f(xm).

,

其系数行列式是 Vandermonde 行列式不为 0, 因此由 Cramer 法则其有唯一解 ai =
Di

D
, i = 0, 1, · · · ,m. 由于 Di 的元

素均为整数, 因此 ai 是有理数. (2) 结论不对, 反例是 f(x) =
1

2
x2 +

1

2
x.

3. 必要性. 若存在非零解 (0, · · · , 0, ci1 , 0, · · · , 0, cil , 0, · · · , 0), 其中 ci1 , · · · , cil 不全为 0 且 l ≤ s, 则意味着 ci1αi1 +

· · ·+ cilαil = 0, 从而他们线性相关, 矛盾.
充分性. 若存在 l(l ≤ s) 列 αi1 , · · · , αil 线性相关, 即存在不全为 0 的数 ci1 , · · · , cil 使得 ci1αi1 + · · · + cilαil = 0, 则
(0, · · · , 0, ci1 , 0, · · · , 0, cil , 0, · · · , 0) 是一个非零分量数不大于 s 的非零解, 矛盾.

4. 不妨设 a1, a2, · · · , an 互不相同. 考虑 F (x) =

∣∣∣∣∣∣∣∣∣∣∣

f1(x) f2(x) · · · fn(x)

f1(a2) f2(a2) · · · an(a2)
...

... . . . ...
f1(an) f2(an) · · · fn(an)

∣∣∣∣∣∣∣∣∣∣∣
, 这是一个至多 n− 2 次多项式, 有至少

a2, a3, · · · , an 这 n− 1 个不同的根, 因此必恒等于 0. 若删去条件 “次数 ≤ n− 2”, 则可令 fk(x) = xk−1, 此时原行列式
构成 Vandermonde 行列式, 只要 a1, a2, · · · , an 两两不同就不为 0.
5. 将 β1, · · · , βr 扩充为 Rn 的一组基 β1, · · · , βn, 并任意选择 n− r 个向量 αr+1, · · · , αn. 行列式 |(α1 + kβ1, · · · , αn +

kβn)| 是一个关于 k 的至多 n 次多项式, 其等于零至多只有 n 个解 (令 k → ∞ 知此多项式不恒为零), 且在该行列式不
等于零时 α1 + kβ1, · · · , αr + kβr 线性无关, 因此存在无穷多个实数 k.
6. 把后 n− 1 列加到第一列, 提出公因子 1

2
n(n+1), 用第 (1, 1) 元消去同列其他元素, 再按第一列展开得到 n− 1 阶行

列式:

Dn =
1

2
n(n+ 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 · · · n− 1 n

1 1 2 · · · n− 2 n− 1

1 n 1 · · · n− 3 n− 2
...

...
... . . . ...

...
1 4 5 · · · 1 2

1 3 4 · · · n 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

2
n(n+ 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 · · · n− 1 n

0 −1 −1 · · · −1 −1

0 n− 2 −2 · · · −2 −2
...

...
... . . . ...

...
0 2 2 · · · 2− n 2− n

0 1 1 · · · 1 1− n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
13



行列式 (2)

=
1

2
n(n+ 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 −1 · · · −1 −1

n− 2 −2 · · · −2 −2
...

... . . . ...
...

2 2 · · · 2− n 2− n

1 1 · · · 1 1− n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

用所得 n− 1 阶行列式的第 (1, 1) 元消去同行的其他元素, 再按第一行展开得到 n− 2 阶上三角行列式:

Dn =
1

2
n(n+ 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 0 · · · 0 0

n− 2 −n · · · −n −n
...

... . . . ...
...

2 0 · · · −n −n
1 0 · · · 0 −n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −1

2
n(n+ 1)

∣∣∣∣∣∣∣∣∣∣∣

−n · · · −n −n
. . . ...

...
−n −n

−n

∣∣∣∣∣∣∣∣∣∣∣
= (−1)n−1n+ 1

2
nn−1.

7. 前者是偶数阶斜对称矩阵. 若 a = 0. 则按第 1、2 行展开, 得到 D1 = (−1)1+2+3+4

∣∣∣∣∣b c

d e

∣∣∣∣∣ ∗
∣∣∣∣∣−b −d
−c −e

∣∣∣∣∣ = (be − cd)2.

若 a ̸= 0, 则将第 1 行的 d

a
倍和第 2 行的 b

a
倍加到第 3 行上, 将第 1 行的 e

a
倍和第 2 行的 c

a
倍加到第 4 行上, 得到

D2 =

∣∣∣∣∣∣∣∣∣∣∣∣

0 a b c

−a 0 d e

0 0 0 f +
cd

a
− be

a

0 0 −f +
be

a
− cd

a
0

∣∣∣∣∣∣∣∣∣∣∣∣
. 然后按第 1、2 行展开, 得到 D1 = (af − be+ cd)2.

后者是奇数阶斜对称矩阵, 因此行列式为 D2 = 0 (因为 |D2| = |DT
2 | = | −D2| = (−1)2k+1|D2| ⇒ |D2| = 0).

8. 我们已经知道主对角占优矩阵满秩. 考虑函数 A(t) =



a11 a12t a13t · · · a1nt

a21t a22 a23t · · · a2nt

a31t a32t a33 · · · a3nt
...

...
... . . . ...

an1t an2t an3t · · · ann


. 那么任意 t ∈ [0, 1], A(t) 都

是主对角阵占优矩阵, 因此 det(A(t)) ̸= 0. 由于 det(A(0)) > 0, 由函数连续性知 det(A(1)) > 0, 此即原命题.
9. 首先由条件 (3) 知 |A| = 0, 因此 rank(A) ≤ n− 1. 其次考虑 A 中元素 a11 的余子式 M11, 由条件 (1)(2) 知其严格
主对角占优, 因此 M11 > 0. 这意味着 rank(A) = n− 1.

10. 先求出其行简化阶梯矩阵


1 0 0 1 0

0 1 2 3 0

0 0 0 0 1

0 0 0 0 0

 知其秩为 3, 且有 5 个列极大线性无关组 (第 5 列必选, 第 2 列、第

3 列至多选一个, 其余随意); 观察原矩阵易知有 2 个行极大无关组 (第 2 行、第 3 行至多选一个, 其余随意); 因此有
2× 5 = 10 个 3 阶非零子式.

11. 按第 1 行展开, 得到 D = a11

∣∣∣∣∣a22 a23

a32 a33

∣∣∣∣∣ + a12

∣∣∣∣∣a23 a21

a33 a31

∣∣∣∣∣ + a13

∣∣∣∣∣a21 a22

a31 a32

∣∣∣∣∣ ≤ 3. 下面证明 D ̸= 3. 若不然, 则必有

a11 = a12 = a13 = 1, 且
∣∣∣∣∣a22 a23

a32 a33

∣∣∣∣∣ =
∣∣∣∣∣a23 a21

a33 a31

∣∣∣∣∣ =
∣∣∣∣∣a21 a22

a31 a32

∣∣∣∣∣ = 1. 前两个行列式为 1 可以得到 a22 = a33 = 1, a23 =

a31 = 1, 而此时
∣∣∣∣∣a21 a22

a31 a32

∣∣∣∣∣ = a21a32 − a22a31 = a21a32 − 1 ≤ 0, 矛盾. 因此 D ≤ 2, 一个构造是

∣∣∣∣∣∣∣∣
1 1 0

0 1 1

1 0 1

∣∣∣∣∣∣∣∣ = 2.

12. 将 Mn(K) 的矩阵平铺开看成是 n2 维的行向量, 并取该子空间的一组基 A1, · · · , Ar. 把这 r 个行向量在 axis = 0

方向拼成 r × n2 的矩阵, 并可得到其简化阶梯型矩阵 J . 注意到 J 的行向量 B1, · · · , Br 也是该子空间的一组基, 这组
基的线性组合能使得矩阵在某 r 个位置取到任意的值. 下面用归纳法证明: 任取 n× n 矩阵 A 中的 n2 − n+ 1 个位置,
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期中复习, 矩阵乘法

我们总可以在这些位置填上 0 或 1, 使得不管矩阵 A 其余的 n− 1 个位置填什么数, A 的行列式总为 ±1. 假设命题对
n− 1 级的方阵成立, 考察 n 阶方阵. 由抽屉原理, 总有一行 (不妨设是第 i 行), 该行的 n 个元素都可任意填选. 再选一
列 (不妨设是第 j 列), 该列中存在某个位置不能任意填选. 取 (i, j) 元为 1, (i, ̸= j) 元为 0, 那么在 (i, j) 元的余子式中

最多只有 n − 2 个元素不能任选, 由归纳假设知总可在子阵中能任意填选的地方填上 0 或 1, 使得 (i, j) 元的余子式取

±1. 在此填法下, n 阶方阵 A 的行列式是 (i, j) 元的代数余子式, 即 ±1. 由数学归纳法知命题得证.

6 期中复习, 矩阵乘法

6.1 问题

1. 设 α1, · · · , αr与 β1, · · · , βs是 Rn中的两个线性无关组. 证明 α1, · · · , αr, β1, · · · , βs线性无关当且仅当 ⟨α1, · · · , αr⟩∩
⟨β1, · · · , βs⟩ = {0}.

2. 求 n 阶行列式

∣∣∣∣∣∣∣∣∣∣∣

1 + x1y1 x1y2 · · · x1yn

x2y1 1 + x2y2 · · · x2yn
...

... . . . ...
xny1 xny2 · · · 1 + xnyn

∣∣∣∣∣∣∣∣∣∣∣
.

3. A 是 n 阶矩阵, α = (1, 1, · · · , 1)T 是 n 维列向量, 且 |A| = a, |A− ααT | = b, 求 |A+ 2ααT |.

4. 设 Aij 是行列式 D =

∣∣∣∣∣∣∣∣
a11 · · · a1n
... . . . ...
an1 · · · ann

∣∣∣∣∣∣∣∣ 中 (i, j) 元的代数余子式. 证明

∣∣∣∣∣∣∣∣∣∣∣

a11 · · · a1n x1
... . . . ...

...
an1 · · · ann xn

x1 · · · xn y

∣∣∣∣∣∣∣∣∣∣∣
= Dy −

n∑
i,j=1

Aijxixj .

5. 设 a1, a2, · · · , an ∈ N+, 证明 n 阶行列式 Dn =

∣∣∣∣∣∣∣∣∣∣∣

1 a1 a21 · · · an−1
1

1 a2 a22 · · · an−1
2

...
...

... . . . ...
1 an a2n · · · an−1

n

∣∣∣∣∣∣∣∣∣∣∣
能被 2!3! · · · (n− 1)! 整除.

6. 设数域 K 上的 n 阶方阵 A 的第 (i, j) 元是 ai − bj . 求 det(A), 并计算当 n ≥ 2 且 a1 ̸= a2, b1 ̸= b2 时 AX = 0 的解

空间维数和一组基.
7. 设 A = (aij)n×n, 且 |aiiajj | >

∑
k ̸=i

|aik|
∑
l ̸=j

|ajl| 对任意 1 ≤ i ̸= j ≤ n 成立. 证明 det(A) ̸= 0.

8. 设 A,B 是幂等矩阵 (即 A2 = A,B2 = B), 且 I −A−B 满秩, 证明 rank(A) = rank(B).
9. 设 A是 n阶方阵,证明: (1)若 Ak−1α ̸= 0, Akα = 0,那么 α,Aα, · · · , Ak−1α线性无关; (2) rank(An) = rank(An+1).

10. 记矩阵 H = (aij)中 aij 表示从城市 i到 j 的航班数. (1)解释 Hk 的 (i, j)元的含义; (2)设 H =



0 1 0 0 1

0 0 1 0 0

1 0 0 0 3

0 0 2 0 1

1 0 0 1 0


,

从哪个城市到哪个城市恰好要倒两次飞机? 有几种不同的航班选择? 哪两个城市的通行需要倒的航班次数最多?
11. 求 n 阶方阵 A = (aij) 的行列式 A, 其中 aij =

αn
i − βn

j

αi − βj
, i, j = 1, 2, · · · , n.

12. 设矩阵 A ∈ Rn×n 非平凡. 证明: 若矩阵 A 的每一个元素 aij 的代数余子式 Aij = aij , 则 |A|n−2 = 1.
13. 设已知 |

−→
OA| = 2, |

−−→
OB| = 3, |

−−→
OC| = 4, |

−−→
AB| = 2, |

−−→
BC| = 3, |

−→
AC| = 4, 求混合积的绝对值 |

−→
OA×

−−→
OB ·

−−→
OC|.

6.2 解答

1. “⇒”: 若 x = λ1α1+· · ·+λrαr = µ1β1+· · ·+βs ∈ ⟨α1, · · · , αr⟩∩⟨β1, · · · , βs⟩,则 λ1α1+· · ·+λrαr−µ1β1−· · ·−µsβs =

0 ⇒ λ1 = · · · = λr = µ1 = · · · = µs = 0 ⇒ x = 0.
“⇐”: 考虑 λ1α1 + · · ·+ λrαr +µ1β1 + · · ·+ βs = 0, 这意味着 λ1α1 + · · ·+ λrαr = −µ1β1 − · · · − µsβs ∈ ⟨α1, · · · , αr⟩ ∩
⟨β1, · · · , βs⟩ = {0} ⇒ λ1α1 + · · ·+ λrαr = 0, µ1β1 + · · ·+ µsβs = 0. 由两组向量 {αi}ri=1, {βj}sj=1 各自内部的线性无关

性知 λ1 = · · · = λr = µ1 = · · · = µs = 0, 因此整体也线性无关.
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期中复习, 矩阵乘法

2. 利用拆项大法, 注意若有两列成比例则行列式为 0. 从而最后只会剩下 n+ 1 个行列式:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1y1 0 0 · · · 0

x2y1 1 0 · · · 0

x3y1 0 1 · · · 0
...

...
... . . . ...

xny1 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, · · · ,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 x1yn

0 1 · · · 0 x2yn
...

... . . . ...
...

0 0 · · · 1 xn−1yn

0 0 · · · 0 xnyn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 0

0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0

0 0 · · · 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, 相加得到原行列式为 1 +

n∑
i=1

xiyi.

3. 考虑函数 f(x) = |A + xααT | =

∣∣∣∣∣∣∣∣∣∣∣

a11 + x a12 + x · · · a1n + x

a21 + x a22 + x · · · a2n + x
...

... . . . ...
an1 + x an2 + x · · · ann + x

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

a11 + x a12 + x · · · a1n + x

a21 − a11 a22 − a12 · · · a2n − a1n
...

... . . . ...
an1 − a11 an2 − a12 · · · ann − a1n

∣∣∣∣∣∣∣∣∣∣∣
, 因此

是线性函数. 由 f(0) = a, f(−1) = b 知 f(x) = a+ (a− b)x, 因此 f(2) = 3a− 2b.

4. 按最后一行展开, 得到 LHS = Dy+
n∑

i=1

(−1)n+i+1xiDi, 其中 Di 是把 D 中第 i 列删去, 最后一列补上 (x1, · · · , xn)T

得到的行列式. 再按最后一列对所有 Di 展开, 得到 Di =
n∑

j=1

(−1)n+j(−1)i+jAijxj , 直接代入得到 RHS.

5. 注意到 Dn =

∣∣∣∣∣∣∣∣∣∣∣

1 a1 a1(a1 − 1) · · · a1(a1 − 1) · · · (a1 − n+ 2)

1 a2 a2(a2 − 1) · · · a2(a2 − 1) · · · (a2 − n+ 2)
...

...
... . . . ...

1 an an(an − 1) · · · an(an − 1) · · · (an − n+ 2)

∣∣∣∣∣∣∣∣∣∣∣
(利用初等列变换, 用后面的列加减前面的列),

再将第 k 列提取公因子 (k − 1)!, k = 3, 4, · · · , n 即可.

6. (1) n = 1 时 |A| = a1 − b1, n = 2 时 |A| = (a1 − a2)(b1 − b2). n > 2 时由于 A =


a1 −1

a2 −1
...

...
an −1


(
1 1 · · · 1

b1 b2 · · · bn

)
, 因

此 rank(A) ≤ 2, 从而 |A| = 0.

(2) n = 2 时 |A| ̸= 0, 因此解空间只有零解, 维数为 0, 基是空集. n > 2 时, 由于 rank(A) ≤ 2 且显然 A

(
1, 2

1, 2

)
̸= 0, 因

此 rank(A) = 2, 解空间维数是 n− 2. 因此只需解方程
(
1 1 · · · 1

b1 b2 · · · bn

)
X = 0 即可 (这个分解后的系数矩阵秩也为

2, 因此同解). 直接计算得到一组基为 ηi =

 bi − b2
b2 − b1

,
b1 − bi
b2 − b1

, 0, · · · , 0, 1︸︷︷︸
第i个

, 0 · · · , 0

T

, i = 3, 4, · · · , n.

7. 反证法. 假设 det(A) = 0, AX = 0 有非零解 (c1, · · · , cn)T . 若仅有 ci ̸= 0, 则 A 的第 i 列全零, 与条件矛盾. 下
设第 i, j 个分量不为 0, 且 |ci| ≥ |cj | ≥ |ck|, ∀k ∈ {1, 2, · · · , n}\{i, j}. 考察第 i 个和第 j 个等式, 有 |aiici| · |ajjcj | =
|
∑
k ̸=i

aikck| · |
∑
l ̸=j

ajlcl| ≤ |cj ||
∑
k ̸=i

aik| · |ci|
∑
l ̸=j

|ajl| ⇒ |aiiajj | ≤
∑
k ̸=i

|aik|
∑
l ̸=j

|ajl|, 矛盾.

8. A(I −A−B) = −AB, 因此 rank(A) = rank(A(I −A−B)) = rank(AB), 同理 rank(B) = rank(AB).
9. (1) 设 λ1α+ λ2Aα+ · · ·+ λkA

k−1α = 0, 两边左乘 Ak−1 知 λ1 = 0, 再左乘 Ak−2 知 λ2 = 0, 以此类推知线性无关.
(2) 显然 AnX = 0 ⇒ An+1X = 0. 若存在 An+1α = 0 但 Anα ̸= 0, 则根据 (1) 结论知 α,Aα, · · · , Anα 线性无关, 这是
n 维空间是不可能的. 因此 An+1 和 An 解空间相同, 从而 rank(An) = rank(An+1).
10. (1) 从 a2ij =

∑
s

aisasj 可以看出 Hk 的 (i, j) 元表示从 i 到 j 乘坐恰 k 次航班有多少种乘坐方式. (2) 1 → 3, 1 →

4, 2 → 1, 2 → 5, 3 → 2, 3 → 4, 4 → 1, 5 → 2, 5 → 3, 分别有 1, 1, 1, 3, 1, 3, 3, 1, 2 种航班选择; 2 → 4, 4 → 2 都要倒 3 次,
是最多的.
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11. 利用 xn − yn = (x− y)(xn−1 + xn−2y + xn−3y2 + · · ·+ xyn−2 + yn−1) 及行列式乘法规则 |AB| = |A||B|, 知

|A| =

∣∣∣∣∣∣∣∣∣∣∣

1 α1 α2
1 · · · αn−1

1

1 α2 α2
2 · · · αn−1

2

...
...

... . . . ...
1 αn α2

n · · · αn−1
n

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

βn−1
1 βn−1

2 · · · βn−1
n

βn−2
1 βn−2

2 · · · βn−2
n

...
... . . . ...

β1 β2 · · · βn

1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)

n(n−1)
2

∏
1≤j<i≤n

(αi − αj)(βi − βj).

12. 首先容易看出 |A| =
n∑

i=1

aijAij =
n∑

i=1

a2ij > 0. 其次 |A|2 = |AAT | =

∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

A11 A21 · · · An1

A12 A22 · · · An2

...
... . . . ...

A1n A2n · · · Ann

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

|A| 0 · · · 0

0 |A| · · · 0
...

... . . . ...
0 0 · · · |A|

∣∣∣∣∣∣∣∣∣∣∣
= |A|n ⇒ |A|n−2 = 1.

13. |
−→
OA×

−−→
OB ·

−−→
OC| =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
−→
OAT

−−→
OBT

−−→
OCT

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ =
œ∣∣∣∣∣∣∣∣−→OAT

−−→
OBT

−−→
OCT

∣∣∣∣∣∣∣∣
∣∣∣−→OA −−→

OB
−−→
OC
∣∣∣ =
œ∣∣∣∣∣∣∣∣−→OAT−→OA

−→
OAT−−→OB

−→
OAT−−→OC

−−→
OBT−→OA

−−→
OBT−−→OB

−−→
OBT−−→OC

−−→
OCT−→OA

−−→
OCT−−→OB

−−→
OCT−−→OC

∣∣∣∣∣∣∣∣. 由题意
−→
OAT−→OA =

4,
−−→
OBT−−→OB = 9,

−−→
OC

−−→
OC = 16,

−→
OAT−−→OB =

1

2
[
−→
OAT−→OA+

−−→
OBT−−→OB− (

−−→
OB−

−→
OA)T (

−−→
OB−

−→
OA)] =

1

2
(
−→
OA2+

−−→
OB2−

−−→
AB2) =

9

2
,
−→
OAT−−→OC =

1

2
(
−→
OA2+

−−→
OC2−

−→
AC2) = 2,

−−→
OBT−−→OC =

1

2
(
−−→
OB2+

−−→
OC2−

−−→
BC2) = 8,从而 |

−→
OA×

−−→
OB ·

−−→
OC| =

√
104 = 2

√
26.

7 可逆矩阵, 分块矩阵

7.1 问题

1. 证明可逆的上三角矩阵的逆仍为上三角矩阵.

2. 计算矩阵 A =



1 2 3 · · · n

1 2 · · · n− 1

1 · · · n− 2
. . . ...

1


的逆.

3. A 是 n 阶可逆矩阵, α, β 是 n 维列向量, 且矩阵 A+ αβT 可逆, 证明 (A+ αβT )−1 = A−1 − A−1αβTA−1

1 + βTA−1α
.

4. 计算矩阵 A =


1 + a1 1 · · · 1

1 1 + a2 · · · 1
...

... . . . ...
1 1 · · · 1 + an

 的逆, 其中 ai > 0, ∀i = 1, 2, · · · , n.

5. A 是 n 阶方阵, 试根据 rank(A) 的取值讨论 rank(A∗), 其中 A∗ 是它的伴随矩阵.
6. 求与任意可逆矩阵乘法可交换的矩阵构成的集合.

7. A 是 n 阶方阵 (n ≥ 3), A3 = O, 证明矩阵 M =

[
I A

A I

]
可逆, 并求其逆.

8. 已知 Im×m −Am×nBn×m 可逆, 证明 In×n −Bn×mAm×n 也可逆并求其逆矩阵. 进一步, 证明两者行列式相等.

9. 矩阵 Am×m, Bm×n, Cn×m, Dn×n 满足 A 和 E := D − CA−1B 可逆. 证明分块矩阵
(
A B

C D

)
也可逆并求其逆.

10. A 是 n 阶方阵, 证明 rank(A− I) + rank(A2 +A+ I) = n 当且仅当 A3 = I.
11. A,B 是 n 阶方阵, 且满足 rank(I −AB) + rank(I +BA) = n, 证明或否定: A 是可逆矩阵.
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可逆矩阵, 分块矩阵

12. A,B,C,D 都是 n 阶方阵, AC = CA, AD = CB, 且 A 可逆. 求矩阵
(
A B

C D

)
的秩.

7.2 解答

1. 将单位矩阵拼在原矩阵右边, 其行变换只需不断用上面的行加减下面的行, 此操作只会将单位矩阵变成上三角矩阵.

2. 记 J =



0 1 0 · · · 0 0 0

0 0 1 · · · 0 0 0

0 0 0 · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · 0 1 0

0 0 0 · · · 0 0 1

0 0 0 · · · 0 0 0


, 则 A = I +2J + · · ·+nJn−1. 由于 A(I − 2J +J2) = 0, 因此 A−1 = I − 2J +J2.

3. 注意到 A+αβT = A(I+A−1αβT ),因此 (A+αβT )−1 = (I+A−1αβT )−1A−1 = (I−A−1α(1+βTA−1α)−1βT )A−1 =

A−1 − A−1αβTA−1

1 + βTA−1α
.

4. 利用上第 3 题结论,

A = diag(a1, · · · , an)(In +



1

a1
1

a2...
1

an


[
1 · · · 1

]
)

⇒A−1 = (In − (1 +
1

a1
+

1

a2
+ · · ·+ 1

an
)−1



1

a1
1

a2...
1

an


[
1 · · · 1

]
)diag( 1

a1
, · · · , 1

an
).

5. 当 rank(A) = n 时, 由于 AA∗ = |A|I, 从而 A∗ 可逆, 因此 rank(A∗) = n. 当 rank(A) = n− 1 时, 由于 AA∗ = 0, 且
dim(Ker(A)) = n− rank(A) = 1, 又有 A中存在 n−1阶非零子式, 因此 A∗ 不全零, rank(A∗) = 1. 当 rank(A) ≤ n−2

时, A 中不存在 n− 1 阶非零子式, 因此 A∗ 全零, 从而 rank(A∗) = 0.
6. 先验证初等矩阵 P (j, i(1)), 即 AP (j, i(1)) = P (j, i(1))A, 两边同时减去矩阵 A 得到 AEij = EijA⇒ aii = ajj , aij =

0, ∀i ̸= j, 因此只能是数量矩阵, 其与所有矩阵都可交换.

7. 设 P =

[
I O

−A I

]
, Q =

[
I −A
O I

]
, 从而 PMQ =

[
I O

O I −A2

]
. A3 = O ⇒ (PMQ)−1 =

[
I O

O I +A2

]
⇒ M−1 =

Q

[
I O

O I +A2

]
P =

[
I +A2 −A
−A I +A2

]
.

8. (I−BA)(I+B(I−AB)−1A) = I−BA+B(I−AB)−1A−BAB(I−AB)−1A = I−BA+B(I−AB)(I−AB)−1A = I,
因此 (I −BA)−1 = I +B(I −AB)−1A.

由于

(
I −AB A

O I

)
列→

(
I A

B I

)
行→

(
I A

O I −BA

)
, 两边取行列式知 |I −AB| = |I −BA|.

9.
(
A B I O

C D O I

)
行→

(
A B I O

O D − CA−1B −CA−1 I

)
行→

(
I A−1B A−1 O

O E −CA−1 I

)
行→(

I O A−1 +A−1BE−1CA−1 −A−1BE−1

O E −CA−1 I

)
行→

(
I O A−1 +A−1BE−1CA−1 −A−1BE−1

O I −E−1CA−1 E−1

)
⇒(

A B

C D

)−1

=

(
A−1 +A−1BE−1CA−1 −A−1BE−1

−E−1CA−1 E−1

)
.
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正交矩阵, 线性映射

10. 由裴蜀定理 (辗转相除法),存在多项式 f, g使得 f(x)(x−1)+g(x)(x2+x+1) = 1,即 f(A)(A−I)+g(A)(A2+A+I) =

I. 从而利用分块初等行列变换,[
A− I O

O A2 +A+ I

]
列→

[
A− I f(A)(A− I)

O A2 +A+ I

]
行→

[
A− I I

O A2 +A+ I

]
行→

[
A− I I

I −A3 O

]
列→

[
O I

A3 − I O

]
.

从而 rank(A− I) + rank(A2 +A+ I) = n+ rank(A3 − I), 因此原命题成立.
11. 利用分块初等变换, 得[

I O

−B I

][
I −A
B I

][
I A

O I

]
=

[
I O

O I +BA

]
,

[
I A

O I

][
I −A
B I

][
I O

−B I

]
=

[
I +AB O

O I

]
,

从而知 rank(I +BA) = rank(I +AB). 因此原条件等价于 rank(I −AB) + rank(I +AB) = n, 由上一小题的类似结论
知 (I −AB)(I +AB) = 0 ⇒ (AB)2 = I, 因此 A 可逆.

12. 利用分块初等变换,得
(

I O

−CA−1 I

)(
A B

C D

)(
I −A−1B

O I

)
=

(
A O

O D − CA−1B

)
. 由于 rank(D−CA−1B) =

rank(A(D − CA−1B)) = 0, 因此 rank
(
A B

C D

)
= rank(A) = n.

8 正交矩阵, 线性映射

8.1 问题

1. 记 Aθ =

(
cos θ − sin θ
sin θ cos θ

)
, Bθ =

(
cos θ sin θ
sin θ − cos θ

)
, 试证明 AθAω = Aθ+ω, BθBω = Aθ−ω, AθBω = Bθ+ω = BωA−θ,

并解释 Aθ, Bθ 作为 R2 上线性变换的几何含义.

2. 求矩阵 A =


1 2 0 1

1 1 1 0

0 1 2 1

2 1 1 1

 的 QR 分解.

3. 矩阵 A =


1 0 1 1

3 1 4 7

−1 1 0 3

, 求 ImA 和 KerA 的一个基和维数.

4. A ∈ Rn×n, 所有顺序主子式都大于 0, 所有非主对角元都小于 0. 证明 A−1 的每个元素都大于 0.
5. 秩为 r(> 0) 的对称矩阵 A ∈ Rn×n, 证明 A 至少有一个 r 阶主子式不为 0, 且所有不等于 0 的 r 阶主子式都同号.
6. (1) ABCD 是中心为原点、边与坐标轴平行的单位正方形. 求所有 R2 上所有保持该正方形不变的线性变换, 写出它
们的矩阵, 并证明它们可被两个变换生成. (2) 试求出保持中心为原点的正十二面体不变的线性变换的个数.
7. 设 α1 = (1, 0, 1, 0)T , α2 = (1, 1, 0, 1)T , α3 = (0, 1, 0, 2)T . (1) 求 α3 在 ⟨α1, α2⟩ 上的正交投影; (2) 求 α3 到 ⟨α1, α2⟩
的距离; (3) 求到 ⟨α1, α2⟩ 的正交投影算子 (用矩阵表示).
8. β ∈ Rn 是单位向量 (∥β∥2 = 1), P = I − ββT , A = I − 2ββT . (1) 证明 P 是幂等对称矩阵; (2) 证明 A 是实对称正

交矩阵, 且满足 A2 = I; 计算 det(A), 并探究 A 的几何性质.
9. A,B 是 n 维线性空间上的线性变换, AB = BA, 证明或否定 rankA2 + rankB2 ≥ 2rank(AB).
10. A,B 是幂等变换, 证明 KerA = KerB 当且仅当 AB = A,BA = B.
11. A 是 n 维线性空间 V 上的线性变换, 证明存在 r ∈ N 使得对于 ∀s ∈ N, KerAr = KerAr+s.
12. V1, V2, V3 都是数域 F 上的有限维线性空间, φ : V1 → V2, ψ : V1 → V3 是两个线性映射. 证明 ψ 可以写成 ψ = σφ,
其中 σ : V2 → V3 是线性映射的充要条件是 Kerφ ⊂ Kerψ.

8.2 解答

1. Aθ 是逆时针旋转 θ 角, Bθ 是按逆时针方向的
θ

2
角做镜面反射. 有了几何含义, 验证这些矩阵乘法也就很简单了.
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正交矩阵, 线性映射

2. 直接利用 Schmidt 正交化得到 Q =



√
6

6

7
√
102

102
−19

√
119

357

√
7

21√
6

6

√
102

102

√
119

51
−
√
7

3

0

√
102

17

25
√
119

357

2
√
7

21√
6

3
−2

√
102

51

2
√
119

119

√
7

7


, R =



√
6

5
√
6

6

√
6

2

√
6

2

0

√
102

6

3
√
102

34

3
√
102

34

0 0
3
√
119

17

4
√
119

119

0 0 0
2
√
7

7


.

3. 利用行变换求简化阶梯型得 A →


1 0 1 1

0 1 1 4

0 1 1 4

 →


1 0 1 1

0 1 1 4

0 0 0 0

, 可以看出 ImA 的一个基是前两列, 维数是 2.

AX = 0 的一个基础解系是 η1 = (1, 1,−1, 0)T , η2 = (1, 4, 0,−1)T , 这是 KerA 的一个基, 维数是 2.

4. 用数学归纳法. n = 1 时显然成立. 假设 n− 1 时命题为真, 那么现在来看 An =

(
An−1 α

βT ann

)
. 由顺序主子式大于

0 知 An−1 可逆, 且由
(

In−1 0

−βTA−1
n−1 1

)(
An−1 α

βT ann

)
=

(
An−1 α

0 ann − βTA−1
n−1α

)
知 ann − βTA−1

n−1α > 0. 计算得到

A−1 =

(
A−1

n−1 +A−1
n−1α(ann − βTA−1

n−1α)
−1βTA−1

n−1 −A−1
n−1α(ann − βTA−1

n−1α)
−1

−(ann − βTA−1
n−1α)

−1βTA−1
n−1 (ann − βTA−1

n−1α)
−1

)
. 依次验证: ann − βTA−1

n−1α > 0,

并利用归纳假设知 A−1
n−1 每个元素大于 0, A−1

n−1α 和 βTA−1
n−1 每个元素小于 0. 定睛一看, A−1 每个元素也都大于 0 了.

5. (1) 取 A 的某个列极大线性无关组 αi1 , · · · , αir , 对应的行极大线性无关组为 αT
i1
, · · · , αT

ir
. 下证 A

(
i1, · · · , ir
i1, · · · , ir

)
̸= 0.

这是因为矩阵 (αi1 , · · · , αir) 的秩也是 r, 而其第 i1, · · · , ir 行作为 αT
i1
, · · · , αT

ir
的缩短组可以表出该矩阵的其他所有行

向量, 因此构成一个极大行线性无关组.

(2) 存在可逆矩阵 P,Q 使得 A = P

(
Ir O

O O

)
Q. 由于 A 对称, 因此 A = P

(
Ir O

O O

)
= QT

(
Ir O

O O

)
P T , 即是

P−1QT

(
Ir O

O O

)
=

(
Ir O

O O

)
QP−T .

对应分块 P−1QT =

(
H1 H2

H3 H4

)
, 代入得到 HT

1 = H1,H3 = O, 从而 Q = P

(
H1 H2

O H4

)
, A = P

(
H1 O

O O

)
P T , 且 H1

是对称满秩矩阵. 因此由 Binet-Cauchy 定理,

A

(
k1, · · · , kr
k1, · · · , kr

)
=

∑
1≤v1<···<vr≤n

P

(
k1, · · · , kr
v1, · · · , vr

)[(
H1 O

O O

)
P T

](
v1, · · · , vr
k1, · · · , kr

)

=
∑

1≤v1<···<vr≤n

P

(
k1, · · · , kr
v1, · · · , vr

) ∑
1≤µ1<···<µr≤n

(
H1 O

O O

)(
v1, · · · , vr
µ1, · · · , µr

)
P T

(
µ1, · · · , µr

k1, · · · , kr

)

=
∑

1≤v1<···<vr≤n

P

(
k1, · · · , kr
v1, · · · , vr

)(
H1 O

O O

)(
v1, · · · , vr
1, · · · , r

)
P T

(
1, · · · , r
k1, · · · , kr

)

= P

(
k1, · · · , kr
1, · · · , r

)(
H1 O

O O

)(
1, · · · , r
1, · · · , r

)
P T

(
1, · · · , r
k1, · · · , kr

)

=

[
P

(
k1, · · · , kr
1, · · · , r

)]2
|H1|,

于是所有不为 0 的主子式都与 |H1| 同号.

6. (1) 只需确定基的像. e1 可以有 4 种选择, e2 在 e1 的基础上有 2 种选择, 因此有 8 种:
[
±1 0

0 ±1

]
,

[
0 ±1

±1 0

]
. 它

们可由逆时针旋转 90◦ 和关于 y 轴的反射这两个变换生成, 即
[
0 −1

1 0

]
,

[
−1 0

0 1

]
.
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(2) 只需确定其中任意三个点 (对应的向量) 的像, 这里我们考虑共面的某三个点. 因为有 20 个顶点, 每个顶点又有 3
个邻结点, 和这 2 个点具有原始度量关系的点又有 2 个, 因此有 20× 3× 2 = 120 个线性变换.
7. span⟨α1, α2⟩的一组标准正交基是 β1 = (

1√
2
, 0,

1√
2
, 0)和 β2 = (

1√
10
,

2√
10
,− 1√

10
,

2√
10

). (1)投影是 = (α3, β1)β1+

(α3, β2)β2 = (
3

5
,
6

5
,−3

5
,
6

5
). (2)距离是 |(0, 1, 0, 2)− (

3

5
,
6

5
,−3

5
,
6

5
)| = |(−3

5
,−1

5
,
3

5
,
4

5
)| =

√
35

5
. (3)向量 α = (x, y, z, w)

的投影是 (α, β1)β1 + (α, β2)β2 = (
3x+ y + 2z + w

5
,
x+ 2y − z + 2w

5
,
2x− y + 3z − w

5
,
x+ 2y − z + 2w

5
), 因此算子是

1

5


3 1 2 1

1 2 −1 2

2 −1 3 −1

1 2 −1 2

.

8. (1) P 2 = (I − ββT )(I − ββT ) = I − 2ββT + β(βTβ)βT = I − ββT = P , 对称性显然.
(2) 对称性显然, 且 ATA = A2 = I − 4ββT + 4ββTββT = 1, 因此正交. |A| = |I − 2ββT | = 1− 2βTβ = −1. 注意到 P

是在 ⟨β⟩⊥ 上的投影, 因此 A 是关于 ⟨β⟩⊥ 作镜面反射.

9. 结论不对. 可取 J =

(
0 1

0 0

)
, A =

(
J

J

)
, B =

(
J I

O J

)
. A2 = O,B2 =

(
O 2J

O O

)
, AB = BA =

(
O J

O O

)
.

10. “⇒”: ∀α, A(Aα− α) = 0 ⇒ B(Aα− α) = 0 ⇒ BA = B. 同理 AB = A.
“⇐”: ∀α ∈ KerA, Bα = BAα = 0 ⇒ KerA ⊂ KerB. 同理 KerB ⊂ KerA.
11. 先证明存在 r ∈ N 使得 KerAr = KerAr+1. 显然有无穷递升链 dim(KerA) ≤ dim(KerA2) ≤ dim(KerA3) ≤ · · · , 注
意到这条链有上界 n, 因此必然存在 r 使得 dim(KerAr) = dim(KerAr+1), 这意味着 KerAr = KerAr+1. 现在开始推广
到 r + s: 由于 Ar+2α = 0 ⇔ Ar+1(Aα) = 0 ⇔ Ar(Aα) = 0 ⇔ Ar+1α = 0, 以此类推知 KerAr+s = KerAr, ∀s ∈ N.
12. 必要性是显然的, 下面证明充分性. 取 Kerφ 的一组基 α1, · · · , αr, 并扩充成 Kerψ 的基 α1, · · · , αr, β1, · · · , βs, 又
再扩充成 V1 的一组基 α1, · · · , αr, β1, · · · , βs, γ1, · · · , γt. 显然 φ(β1), · · · , φ(βs), φ(γ1), · · · , φ(γt) 是 Imφ 的一组基, 并

又可扩充成 V2 的一组基 φ(β1), · · · , φ(βs), φ(γ1), · · · , φ(γt), δ1, · · · , δl. 现在, 对于任意 β =

s∑
i=1

aiφ(βi) +

t∑
j=1

bjφ(γj) +

l∑
k=1

ckδk ∈ V2, 只需定义 σ(β) =
t∑

j=1

bjψ(γj) 即可.

9 特征值, 特征向量

9.1 问题

1. 矩阵
[
3 2

1 2

]
诱导了 R2 上的线性变换 A. (1) 写出 A 在基 α1 = (1, 1)T , α2 = (1,−1)T 下的矩阵; (2) 求在变换 A 下

保持不动的直线; (3) α = y1α1 + y2α2, 求 Aα 在基 α1, α2 下的坐标.

2. 求矩阵 A =


2 2 −2

2 5 −4

−2 −4 5

 的特征值和特征向量. 你能求出任意一个三阶矩阵的特征值和特征向量吗?

3. 3 阶矩阵 A 的特征值是 λ1, λ2, λ3, 对应的特征向量是 (1, 0, 0)T , (0, 1, 0)T , (−1, 0, 1)T , 求 Am. 你能推广到 eA 吗?
4. A,B 是 m× n 和 n×m 矩阵. 证明 AB 与 BA 有相同的非零特征值, 且这些特征值的几何重数和代数重数也相同.
5. 利用矩阵方法求出斐波拉契数列的通项公式.
6. A 是第一类 3 阶正交矩阵. (1) 证明 λ = 1 是 A 的一个特征值. (2) 设 α1 是 λ = 1 的一个单位特征向量, 将其扩充
为一组标准正交基 α1, α2, α3, 证明 α1, Aα2, Aα3 仍是一组标准正交基. (3) 已知 Aα2 = (cos θ)α2 + (sin θ)α3, 求 Aα3.
(4) 探究 A 的几何性质.
7. A 是第二类 3 阶正交矩阵. (1) 证明 λ = −1 是 A 的一个特征值. (2) 设 α1 是 λ = −1 的一个单位特征向量, 将其

扩充为一组标准正交基 α1, α2, α3, 证明 A(α1, α2, α3) = (α1, α2, α3)


−1 0 0

0 cos θ − sin θ
0 sin θ cos θ

. (3) 探究 A 的几何性质.

8. 证明任一复矩阵一定相似于一个上三角矩阵.
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特征值, 特征向量

9. 求 n 阶循环矩阵 A =



a1 a2 a3 · · · an

an a1 a2 · · · an−1

an−1 an a1 · · · an−2

...
...

... . . . ...
a2 a3 a4 · · · a1


的行列式.

10. A,B,C 分别是 n×n,m×m,n×m矩阵,其中 n > m, rank(C) = m,且 AC = CB. 证明 |λIm−B|整除 |λIn−A|.
11. A,B 分别是 m,n 阶方阵, 且无公共特征值. 求解矩阵方程 AX = XB(你可以设定一些自由变元来表示答案).
12. n 维空间 V 上的线性变换 A 有 n+ 1 个特征向量, 且其中任意 n 个线性无关. 求所有可能的 A 构成的集合.
13. A,B 是二阶实方阵, 且满足 A2 +B2 = O. 证明 det(AB −BA) ≤ 0.

9.2 解答

1. (1)矩阵是 (α1, α2)
−1A(α1, α2) =

(
4 0

1 1

)
. (2)保持不动的直线即特征向量,先解 |λI−A| = 0 ⇒ λ = 1, 4,然后求得

特征向量分别是 β1 = (1,−1)T , β2 = (2, 1)T , 即这两个向量所对应的直线保持不变. (3) 根据 (1), 坐标为 (4y1, y1 + y2).
2. 先解 |λI − A| = 0 ⇒ λ = 1(重根), 10, 对应的特征向量分别是 (2,−1, 0)T , (2, 0, 1)T , (1, 2,−2)T . 一元三次实方程在
实数范围内必有解, 剩下两个解要么都是实数要么是共轭复数.

3. Am =


1 0 −1

0 1 0

0 0 1



λm
1

λm
2

λm
3



1 0 −1

0 1 0

0 0 1


−1

=


λm
1 0 λm

1 − λm
3

0 λm
2 0

0 0 λm
3

.

4. WLOG m ≥ n. 由 |I−AB| = |I−BA|知 |λI−AB| = λm|I−λ−1AB| = λm|I−λ−1BA| = λm−n|λI−BA|,因此非
零特征值的代数重数相同. 另一方面, 若 ABµ = λµ 对于某个特征值 λ 有解空间 ⟨µ1, · · · , µd⟩(基), 则 ⟨Bµ1, · · · , Bµd⟩
属于 BAX = λX 的解空间, 且它们线性无关 (k1Bµ1 + · · ·+ kdBµd = 0 ⇒ k1µ1 + · · ·+ kdµd ∈ KerB ⇒ λ(k1µ1 + · · ·+
kdµd) = AB(k1µ1 + · · ·+ kdµd) = 0 ⇒ k1 = · · · = kd = 0). 同理反过来也成立, 因此它们的解空间维数相同, 即非零特
征值的几何重数相同.

5. 先写出递推公式
(
an

an−1

)
=

(
1 1

1 0

)(
an−1

an−2

)
,做特征值分解

(
1 1

1 0

)
=

(
a11 a12

a21 a22

)1 +
√
5

2
1−

√
5

2

(a11 a12

a21 a22

)−1

,

由于

(
an

an−1

)
=

(
1 1

1 0

)n−1(
a1

a0

)
, 利用特征值分解可推导 an = A(

1 +
√
5

2
)n + B(

1−
√
5

2
)n. 代入 n = 0, 1 知

A =
1√
5
, B = − 1√

5
, 因此 an =

1√
5
(
1 +

√
5

2
)n − 1√

5
(
1−

√
5

2
)n.

6. (1) |I −A| = −|A− I| = −|A||I −A−1| = −|I −AT | = −|I −A| ⇒ |I −A| = 0.
(2) 正交矩阵诱导等距同构, 因此 α1, Aα2, Aα3(即 Aα1, Aα2, Aα3) 仍是标准正交基.
(3) 原题可转化为已知 A 的前两列为 (1, 0, 0)T , (0, cos θ, sin θ)T , 去补全第三列. 显然是 (0,− sin θ, cos θ)T , 因此 Aα3 =

−(sin θ)α2 + (cos θ)α3.
(4) 绕过原点、线向为 α1 的直线旋转 θ 角.
7. (1) |I +A| = |A||I +A−1| = −|I +AT | = −|I +A| ⇒ | − I −A| = 0.
(2) 原题可转化为已知 A 的前两列为 (−1, 0, 0)T , (0, cos θ, sin θ)T , 去补全第三列. 过程与 6(3) 类似.
(3) 绕过原点、线向为 α1 的直线旋转 θ 角, 再关于平面 ⟨α1⟩⊥ 作镜面反射.
8. 对矩阵级数用数学归纳法. n = 1 时显然为真. 假设 n − 1 阶复矩阵必然相似于一个上三角矩阵, 考虑 n 阶矩阵 A.
设 λ1 是某个特征值, α1 是对应的某个特征向量. 将 α1 扩充为 Cn 的一组基 α1, · · · , αn 并记 P1 = (α1, · · · , αn). 那么

P−1
1 AP1 = (P−1

1 Aα1, · · · , P−1
1 Aαn) = (λ1P

−1
1 α1, · · · , P−1

1 Aαn) =

(
λ1 αT

0 B

)
,

其中 α ∈ Cn−1, B 是 n − 1 级复矩阵. 由归纳假设, 存在 P2 使得 P−1
2 BP2 是上三角矩阵. 定义 P = P1

(
1 0

0 P2

)
, 易
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矩阵的相似与对角化

知 P 可逆, 且满足

P−1AP =

(
1 0

0 P−1
2

)
P−1
1 AP1

(
1 0

0 P2

)
=

(
λ1 αTP2

0 P−1
2 BP2

)
,

此时 P−1AP 是上三角矩阵.

9. 记 J =



1

1
. . .

1

1


, 则 A = a1I + a2J + a3J

2 + · · ·+ anJ
n−1. 注意到 J 的特征多项式是 λn − 1, 因此其特

征值为 wk = e
2kπi
n , k = 0, 1, · · · , n− 1, 从而 A 的特征值是

n∑
i=1

aiw
i−1
k , 这意味着 |A| =

n∏
k=1

(
n∑

i=1

aiw
i−1
k ).

10. 由于 C 列满秩, 因此存在 n 阶可逆矩阵 P 使得 C = P

(
Im

O

)
, 从而 AC = CB 可写为 (P−1AP )P−1C = P−1CB.

对 P−1AP 作分块

(
A1 A2

A3 A4

)
,其中 A1 是 m阶方阵,代入上式知 A1 = B,A3 = O. 于是 |λIn−A| = |λIn−P−1AP | =∣∣∣∣∣λIm −B −A2

O λIn−m −A4

∣∣∣∣∣ = |λIm −B||λIn−m −A4|, 此即整除关系.

11. 方程只有零解. 假设存在 AC = CB,并且 rank(C) = r ≥ 1. 则存在 m,n阶可逆矩阵 P,Q使得 PCQ =

(
Ir O

O O

)
.

由 AC = CB 知 (PAP−1)(PCQ) = (PCQ)(Q−1BQ), 并作分块 PAP−1 =

(
A1 A2

A3 A4

)
, Q−1BQ =

(
B1 B2

B3 B4

)
, 代入

计算得到 A1 = B1, B2 = O,A3 = O. 因此 A,B 的特征多项式分别为 |λIm−A| = |λIm−PAP−1| = |λIr−A1||λIm−r−
A4|, |λIn −B| = |λIn −Q−1BQ| = |λIr −A1||λIn−r −B4|. 这与无公共特征值矛盾.
12. A只能是数乘变换. 考虑特征向量 η0, · · · , ηn 对应于特征值 λ0, · · · , λn. 考虑 η0 = a1η1+· · ·+anηn,显然 a1, · · · , an
均不为 0(否则剔除它对应的 ηi 后剩余的 n个向量线性相关). 两边同时左乘 A知 a1(λ1−λ0)η1+ · · ·+an(λn−λ0)ηn =

0 ⇒ a1(λ1 − λ0) = · · · = an(λn − λ0) = 0 ⇒ λ0 = λ1 = · · · = λn. 这表明其是数乘变换.
13. 注意到 (A+ iB)(A− iB) = A2+B2− i(AB−BA),因此 det(AB−BA) = − det(A+ iB) det(A− iB). 若 A+ iB 有
特征值 λ1, λ2, 则 A− iB 有特征值 λ1, λ2(两边取共轭), 从而 − det(A+ iB)det(A− iB) = −λ1λ2λ1λ2 = −|λ1λ2|2 ≤ 0.

10 矩阵的相似与对角化

10.1 问题

1. 对称矩阵 A =


1 2 4

2 −2 2

4 2 1

, 找到正交矩阵 P 和对角矩阵 D 使得 A = PDP T .

2. 分块矩阵
[
A C

O B

]
可对角化, 其中 A,B 是方阵. 问是否有 A,B 都可对角化?

3. 方阵 A,B 可对角化，问是否有 AB 可对角化? 若加上 A,B 可交换条件呢?
4. 证明: 在复数域上, (1) 若矩阵 A,B 可交换, 则 A,B 有公共的复特征向量; (2) 若矩阵 A,B 可交换, 则存在可逆复矩
阵 U 使得 U−1AU 和 U−1BU 同为上三角矩阵.

5. A =


A1 A12 · · · A1n

0 A2 · · · A2n

...
... . . . ...

0 0 · · · An

 是分块上三角矩阵, 对角块为 ni 阶上三角矩阵 Ai =


λi ∗ · · · ∗
0 λi · · · ∗
...

... . . . ...
0 0 · · · λi

, 且 λ1, · · · , λn

互异. 证明 A 可对角化当且仅当 Ai = λiIni
.

6. n 阶实矩阵 A,B 在复数域上相似, 问它们是否在实数域上相似.
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矩阵的相似与对角化

7. A,B 是 n 阶复矩阵, rank(AB −BA) ≤ 1, 证明 A,B 可同时上三角化.
【编者注】与第 4(2) 题相比, 本题条件有所放松 (秩要求从 0 放宽到 1).
8. 考虑数域 F 上的 n 阶方阵构成的线性空间 Mn(F ). 定义线性运算 σ(A) = AT , 求出它的特征值和对应的特征子空
间, 并证明它可以对角化.
9. n 维向量 α = (a1, · · · , an)T , β = (b1, · · · , bn)T , A = αβT , 且 a1b1 ̸= 0. 证明 A 可对角化的充要条件是 αTβ ̸= 0.
10. n 阶方阵 A 满足 A2 = A, 证明 rank(A) = tr(A).

11. (Roth 定理) Am×m, Bn×n, Cm×n. 证明: 若存在矩阵 Xm×n 使得 AX −XB = C, 则矩阵
[
A C

O B

]
与矩阵

[
A O

O B

]
相似. 该命题的逆命题是否也成立?
12. 集合 S 由一些可对角化的 n 阶方阵构成, 且其中任意两个矩阵都可交换. 问是否有 S 中所有矩阵都可同时对角化.
【编者注】本题是第 3 题的一个推广.

10.2 解答

1. |λI − A| = 0 ⇒ λ = −3(重根),6, 对应的一组标准正交特征向量是 (
1√
5
,− 2√

5
, 0)T , (

4
√
5

15
,
2
√
5

15
,−

√
5

3
)T , (

2

3
,
1

3
,
2

3
)T .

因此 D = diag(−3,−3, 6), P =


1√
5

4
√
5

15

2

3

− 2√
5

2
√
5

15

1

3

0 −
√
5

3

2

3

.

2. 由题意, 存在可逆分块矩阵 U =

[
U1 U2

U3 U4

]
使得

[
A C

O B

][
U1 U2

U3 U4

]
=

[
U1 U2

U3 U4

][
D1 O

O D2

]
, 其中 D1, D2 是对角矩

阵. 这得到 BU3 = U3D1, BU4 = U4D2. 取一个 [U3, U4] 的列极大线性无关组知 B 可对角化. 对于 A, 注意到只需证明
AT 可对角化, 对原矩阵取转置然后类似证明即可.

3. (1) 有反例 A =

[
1

−1

]
, B =

[
1 1

0 −1

]
, AB =

[
1 1

0 1

]
.

(2) 可以对角化. 不妨设 A 是对角矩阵 diag(λ1I1, · · · , λsIs), 并将 B 按照这种格式分块


B11 · · · B1s

... . . . ...
Bs1 · · · Bss

, 计算 AB =

BA 知 Bij = 0, ∀i ̸= j. 由第二题结论知 B 可对角化 ⇒ 每个 Bii 均可对角化, 因此 AB 可对角化.
【编者注】本题也说明了 A,B 可同时对角化. 因为可将 Bii 对角化时对应的基矩阵 Uii 按对角线拼接成大矩阵 U , 在此
矩阵对应的基下 A,B 都是对角阵.
4. (1) 记 A 对应于特征值 λ 的特征子空间为 Vλ. ∀α ∈ Vλ, ABα = BAα = λBα ⇒ Bα 也是 A 属于 λ 的特征向量

⇒ Vλ 是 B 的不变子空间. 从而只需取 B|Vλ
的一个特征向量即可.

(2)对空间维数用数学归纳法. 考虑 A,B 的某个公共单位特征向量 α1,扩充成一组标准正交基 α1, · · · , αn. 在这组基下

A,B 对应的矩阵分别是

[
λ1 C1

0 A1

]
,

[
µ1 D1

0 B1

]
. 它们可交换, 因此 A1, B1 也可交换. 由归纳假设存在空间 ⟨α2, · · · , αn⟩

上的一组基 β2, · · · , βn 使得 A1, B1 为上三角矩阵 (其实是定义了变换 Ã1 = P⟨α2,··· ,αn⟩A|⟨α2,··· ,αn⟩ 和相应的 B̃1, 这里
P 是沿着 ⟨α1⟩ 在空间 ⟨α2, · · · , αn⟩ 上的投影). 此时, 在基 α1, β2, · · · , βn 下, A,B 都是上三角矩阵.
5. 容易验证特征值为 λ1, · · · , λn, 每个特征值分别为 ni 重. 由于 A 可对角化当且仅当特征值的对应几何重数也为 ni

重, 而这当且仅当 Ai = λiIni
(考虑 rank(λiIn1+n2+···+nn

−A) 即可).
6. 是. 设 (Q1 + iQ2)A = B(Q1 + iQ2), 且它们都是实矩阵. 那么 Q1A = BQ1, Q2A = BQ2. 由于 |Q1 + λQ2| = 0 至多

只有有限多个解 (Q2 = 0 是平凡情形), 从而存在 λ0 使得 Q0 := Q1 + λ0Q2 可逆, 此时 A = Q−1
0 BQ0, 因此实相似.

7. 只需找到公共的低维不变子空间, 剩下的可对维数归纳. 不妨设 detA = 0, 否则只需将 A 换成 A− λAI, 其中 λA 是

A 的某个特征值. 若 KerA 不是 B 的不变子空间, 则存在 α ∈ KerA 使得 Bα ̸∈ KerA. 此时 (AB−BA)α = ABα ̸= 0,
这也意味着 Im(AB − BA) = span{ABα}. 从而 ∀β ∈ Cn, (AB − BA)β = λβABα ⇒ BAβ = AB(β − λβα), 这表明
ImA 是 B 的不变子空间. 因此 KerA, ImA 中必有 B 的不变子空间, 由 detA = 0 知除非 A = 0, 否则此问题已降维.
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8. 注意到 σ2(A) = A. 从而有 2 个特征值 ±1, 对应的特征子空间为 span{E11, · · · , Enn, Eij + Eji, · · · }(1 ≤ i ̸= j ≤ n)

和 span{Eij − Eji, · · · }(1 ≤ i ̸= j ≤ n). 它们维数加起来是 n2, 因此可以对角化.
9. 容易验证 rank(A) = n− 1, 且 |λI − A| = λn−1|λ ∗ 1− αTβ| ⇒ A 有特征值 0((n− 1)重) 和 αTβ, 且特征值 0 的几

何重数是 n− 1. 因此若 αTβ ̸= 0, 正好有 n 个特征向量; 若 αTβ = 0, 只有 n− 1 个特征向量.
10. 注意到 A2 − A = O, 用类似于第 9 次习题课第 5 题的办法知 A 可对角化且有特征值 0, 1. 因此 A 相似于对角矩

阵 diag(Ir, On−r). 由于相似矩阵具有相同的秩和迹, 因此 rank(A) = tr(A).

11. (1)
[
I X

O I

][
A C

O B

][
I −X
O I

]
=

[
A O

O B

]
.

(2) 成立. 记 V = F (m+n)×(m+n), 构造 V 上的线性变换 φ1(Y ) :=

(
A O

O B

)
Y − Y

(
A O

O B

)
, φ2(Y ) :=

(
A C

O B

)
Y −

Y

(
A O

O B

)
. 由于

(
A O

O B

)
,

(
A C

O B

)
相似, 因此存在可逆矩阵 T ∈ V 使得 T−1

(
A C

O B

)
T =

(
A O

O B

)
. 简单计算

得 φ2(Y ) = Tφ1(T
−1Y ), 这表明 Y ∈ Kerφ2 ⇔ T−1Y ∈ Kerφ1, 即 dim(Kerφ1) = dim(Kerφ2). 将 Y 分块为

(
P Q

R S

)
,

计算可知

Kerφ1 =

{(
P Q

R S

)
: AP = PA,AQ = QB,BR = RA,BS = SB

}
,

Kerφ2 =

{(
P Q

R S

)
: AP + CR = PA,AQ+ CS = QB,BR = RA,BS = SB

}
.

再构造线性映射 µi : Kerφi → Fn×(m+n), µi

(
P Q

R S

)
= (R,S), i = 1, 2. 由于

Kerµ1 = Kerµ2 =

{(
P Q

O O

)
: AP = PA,AQ = QB

}
, Imµ2 ⊂ Imµ1 = {(R,S) : BR = RA,BS = SB} ,

因此由维数关系知 Imµ1 = Imµ2. 注意到
(
O O

O −I

)
∈ Kerφ1, 因此 (O,−I) ∈ Imφ1 = Imφ2, 从而必然存在某个 P,Q

使得

(
P Q

O −I

)
∈ Kerφ2, 此时 AQ−QB = C.

【编者注】Roth 定理的另一部分: AX − Y B = C 有解 X,Y 的充要条件是 rank
(
A O

O B

)
= rank

(
A C

O B

)
. 有兴趣的

读者可以试着自己探究证明, 利用分块矩阵的行列变换技巧.
12. 考虑集合 M = {ϕi ∈ EndK(V ) : ϕiϕj = ϕjϕi,且ϕi可对角化, ∀i, j ∈ I}, 然后对维数用数学归纳法. n = 1, 2 时结论

显然成立. 假设对一切维数小于 n 的线性空间成立, 下面考虑 n 维空间. 任取某非数乘变换 ϕ0 ∈ M , 设 λ1, · · · , λs 是

其特征值, 对应重数为 n1, · · · , ns, 且
s∑

j=1

nj = n, 特征子空间为 V1, · · · , Vs. 与该分块单位矩阵可交换的矩阵必然也是

相应的分块对角矩阵 (即 Vj 都是 ϕi 的不变子空间), 且所有 ϕi 在 Vj 上的限制都可交换. 因此由归纳假设, 存在 Vj 的

一组基 ξj1, · · · , ξj,nj
使得 ϕi|Vj

在这组基下的矩阵都是对角阵. 然后把这 s 组基按顺序拼接起来即可.

11 二次型, 矩阵的合同

11.1 问题

1. 设二次型 f(x1, x2, x3) = 2x1x2 − 2x1x3 + 2x2x3. (1) 将 f(X) 写成 XTAX 的形式, 其中 X = (x1, x2, x3)
T , A 是实

对称矩阵; (2) 求正交矩阵 P = (β1, β2, β3) 和对角矩阵 D = diag(λ1, λ2, λ3), 满足 A = PDP T 且 λ1 ≥ λ2 ≥ λ3; (3) 作
变量的正交替换 X = PY = y1β1 + y2β2 + y3β3, 试用 Y 表示 f(X); (4) 证明 λ3∥X∥22 ≤ XTAX ≤ λ1∥X∥22, 并求出取
等号条件; (5) 确定二次曲面 f(x1, x2, x3) = 1 的类型和对称轴; (6) 用成对的行列变换法将 f(x1, x2, x3) 化为 Q 上的
合同标准型, 并将 A 写成 UDUT 的形式, 其中 U 是 Q 上的可逆矩阵, D 是 Q 上的对角矩阵.
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2. 写出下列矩阵在实数域上的相抵分类, 相似分类和合同分类.

A =


1 0 1

0 1 0

1 0 1

 , B =


0 1 0

1 3 1

0 1 0

 , C =


1 0 0

0 1 0

3 0 1

 , D =


2 1 2

0 1 0

0 0 0

 .

3. 证明: 线性空间 V 上的双线性函数 f(α, β) 是反对称的充要条件是 f(α, α) ≡ 0.
4. 已知数域 K 上的非平凡对称双线性函数 f 可以分解成两个线性函数 f1, f2 的积: f(α, β) = f1(α)f2(β), 问是否存在
线性函数 g 使得 f(α, β) = g(α)g(β)? 如果存在, 请说明理由; 如果不存在, 请举出反例, 并做适当修改使得命题成立.

5. 证明数域 K 上的斜对称矩阵一定合同于下述形式的分块对角矩阵: diag
{(

0 1

−1 0

)
, · · · ,

(
0 1

−1 0

)
, (0), · · · , (0)

}
.

6. 设 n阶实对称矩阵 A的特征值 λ1 ≥ · · · ≥ λn,对应的单位正交特征向量是 β1, · · · , βn. (1)证明: 对任意 0 ̸= X ∈ Rn

且 X ⊥ ⟨β1, · · · , βk−1⟩, 有
XTAX

XTX
≤ λk; (2) 对任意 n− k+ 1 维子空间 V ⊂ Rn, 都有 max

0 ̸=X∈V

XTAX

XTX
≥ λk. 注意到两

问都是可以取等号的, 因此 λk = min
V⊂Rn,dimV=n−k+1

max
0 ̸=X∈V

XTAX

XTX
.

【编者注】这是特征值的极小-极大刻画. 当然也有极大-极小刻画, 你能写出来吗?
7. 设 n 阶实对称矩阵 A,B 的特征值分别为 λ1 ≥ · · · ≥ λn, µ1 ≥ · · · ≥ µn. 若 A−B ⪰ 0, 证明 λk − µk ≥ 0, ∀k.
8. 矩阵 A 有 n 个实特征值 (计重数)λ1 ≥ · · · ≥ λn. 证明任意 λ ∈ [λn, λ1], 存在非零向量 α ∈ Rn 使得 αTAα = λ∥α∥22.
9. A,B 是 n 阶实对称矩阵, 证明 A,B,A+B 的正惯性指数 p(A), p(B), p(A+B) 满足 p(A) + p(B) ≥ p(A+B).
10. A1, · · · , As 都是 n 阶实对称矩阵, 1 ≤ s ≤ n, 且 A1 + · · ·+ As = In. 证明下述两个条件等价: (1) A2

i = Ai, ∀i; (2)
rankA1 + · · ·+ rankAs = n.

11. 实正规矩阵 A =

[
A1 A3

O A2

]
(即 AAT = ATA), 且 A1, A2 是方阵. 证明 A3 = 0, 且 A1, A2 都实正规.

11.2 解答

1. (1)A =


0 1 −1

1 0 1

−1 1 0

. (2)特征值是 1, 1,−2,对应单位特征向量 β1 = (
1√
2
,
1√
2
, 0)T , β2 = (

1√
6
,− 1√

6
,− 2√

6
)T , β3 =

(
1√
3
,− 1√

3
,
1√
3
)T . (3) f(X) = Y TDY = λ1y

2
1 + λ2y

2
2 + λ3y

2
3 .

(4) 正交变换不改变矩阵的模长, 因此等价于 λ3∥Y ∥2 ≤ Y TDY ≤ λ1∥Y ∥22, 取等号条件分别是与 β3 同向和与 β1 同向.
(5) 由于特征值有两个正数和一个负数, 因此是单叶双曲面, 对称轴是 X = tβ3, t ∈ R.

(6) A =


0 1 −1

1 0 1

−1 1 0

 1⃝+ =
1

2
∗ 2⃝

−→
1⃝+ =

1

2
∗ 2⃝


1 1 −1

2
1 0 1

−1

2
1 0


2⃝− = 1⃝

3⃝+ =
1

2
∗ 1⃝

−→
2⃝− = 1⃝

3⃝+ =
1

2
∗ 1⃝


1 0 0

0 −1
3

2

0
3

2
−1

4


3⃝+ =

3

2
∗ 2⃝

−→
3⃝+ =

3

2
∗ 2⃝


1 0 0

0 −1 0

0 0 2

 :=

D. 由成对行列变换过程知 U =


1

2
−1

2
0

1 1 0

−1

2
−3

2
1

.

2. 相抵分类: rank(A) = 2, rank(B) = 2, rank(C) = 3, rank(D) = 2, 因此是 {A,B,D}, {C}.

相似分类: σ(A) = {2, 1, 0}, σ(B) = {3±
√
17

2
, 0}, σ(C) = {1, 1, 1}, σ(D) = {2, 1, 0}, 因此是 {A,D}, {B}, {C}.

合同分类: sgnσ(A) = {1, 1, 0}, sgnσ(B) = {1, 0,−1}, sgnσ(C) = {1, 1, 1}, sgnσ(D) = {1, 1, 0},因此是 {A,D}, {B}, {C}.
3. 必要性: f(α, α) = −f(α, α) ⇒ f(α, α) = 0. 充分性: f(α, β) + f(β, α) = f(α+ β, α+ β)− f(α, α)− f(β, β) = 0.
4. 反例是 K = V = Q, f(α, β) = 2αβ. 可做如下修改: ∃k ∈ K 使得 f(α, β) = kg(α)g(β).
首先 ∃α0, β0 使得 f(α0, β0) = f1(α0)f2(β0) = f1(β0)f2(α0) ̸= 0 ⇒ f1(α0) ̸= 0, f2(α0) ̸= 0. 其次由对称性知 f(α0, β) =

f(β, α0) = f1(α0)f2(β) = f1(β)f2(α0) ⇒ f2(β) =
f2(α0)

f1(α0)
f1(β), 取 k =

f2(α0)

f1(α0)
, g = f1 即可.
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5. 用数学归纳法. n = 1, 2 时显然成立. 假设小于 n 级的斜对称矩阵都成立, 现在考虑 n 级.

情形 1: A 的左上角的 2 级子矩阵 A1 ̸= 0. 则 A1 可逆, 将原矩阵 A 写成分块矩阵

(
A1 A2

−AT
2 A4

)
, 利用成对分块行列变

换

(
A1 A2

−AT
2 A4

)
2⃝+ = (AT

2A
−1
1 ) ∗ 1⃝

−→
2⃝+ = 1⃝ ∗ (−A−1

1 A2)

(
A1 0

0 A4 +AT
2A

−1
1 A2

)
知两者合同, 而 A4 + AT

2A
−1
1 A2 是 n − 2 级斜对称

矩阵, 由归纳假设知成立.
情形 2: 若 A1 = 0, 但是 A2 ̸= 0, 那么利用成对行列变换把 A2 的对应列和 −AT

2 的对应行加到 A1 上即可.
情形 3: 若 A1 = 0, A2 = 0, 则已退化为 n− 2 的情形.

6. (1)设 X = akβk+ · · ·+akβn 后显然. (2)记 U = ⟨β1, · · · , βk⟩,显然 ∀β ∈ U ,有 βTAβ

βTβ
≥ λk;又由于 dimU+dimV =

n+ 1 > n, 因此必然存在 0 ̸= γ ∈ U ∩ V , 从而 max
0 ̸=X∈V

XTAX

XTX
≥ γTAγ

γTγ
≥ λk.

7. 由 A−B ⪰ 0 知 ∀α ∈ Rn, αTAα ≥ αTBα. 从而

λk = min
V⊂Rn,dimV=n−k+1

max
0 ̸=X∈V

XTAX

XTX
≥ min

V⊂Rn,dimV=n−k+1
max

0 ̸=X∈V

XTBX

XTX
= µk.

8. 不妨设 ∥α∥2 = 1, 则 λn ≤ αTAα ≤ λ1 且上下界不等式能取到等号. 因为 {α : ∥α∥2 = 1} 是 Rn 中的紧集, 因此由连
续性和介质性, 函数 f(α) := αTAα 能取到 [λn, λ1] 中的所有值.
9. 若 A,B 均半正定, 则 A+B 也半正定, 从而 p(A+B) = rank(A+B) ≤ rankA+ rankB = p(A) + p(B). 否则, 可设
A = CTdiag(Ip,−Ir−p, On−r)C, 其中 C 是可逆矩阵, 并记 A1 = CTdiag(Ip, On−p)C,A2 = CTdiag(Op,−Ir−p, On−r)C,
那么 p(A) = p(A1), A = A1 + A2. 同理可以找到 B1, B2. 那么 A+B = (A1 +B1) + (A2 +B2), 而 A1 +B1 是半正定

矩阵, A2 +B2 是半负定矩阵, 因此 p(A+B) ≤ p(A1 +B1) ≤ p(A1) + p(B1) = p(A) + p(B).

10. (1) ⇒ (2): A2
i = Ai ⇒ Ai 相似于对角矩阵 diag(Ir, O), 从而

s∑
i=1

rankAi =
s∑

i=1

trAi = tr(
s∑

i=1

Ai) = tr(In) = n.

(2) ⇒ (1): 不妨设 s ≥ 2. 令 Bi =
∑
j ̸=i

Aj , 则 Ai + Bi = In. Ai 是实对称矩阵, 因此存在正交矩阵 Q 使得 QTAiQ =

diag(Di, On−i),其中 Di = diag(λ1, · · · , λri),且 λj ̸= 0, ri = rankAi. 于是 QTBiQ = I−QTAiQ = diag(1−λ1, · · · , 1−
λri , 1, · · · , 1). 这表明 rank(QTBiQ) ≥ n − ri. 另一方面又有 rank(QTBiQ) = rankBi ≤

∑
j ̸=i

rankAj = n − rankAi =

n− ri. 这表明 λ1 = · · · = λri = 1, 因此 Ai = QTdiag(Iri , On−ri)Q⇒ A2
i = Ai.

11. 比较 AAT = ATA 的左上角知 A1A
T
1 + A3A

T
3 = AT

1A1. 两边取迹知 tr(A3A
T
3 ) = 0 ⇒ A3 = 0. 从而 A1 正规, 再比

较右下角知 A2 也正规.

12 正定矩阵

12.1 问题

1. 设 n(≥ 2) 阶实方阵 A =



b+ 8 3 3 · · · 3

3 b 1 · · · 1

3 1 b
. . . ...

...
... . . . . . . 1

3 1 · · · 1 b


, 试求 b 的取值范围使得 A 正定.

2. 设 f = a
n∑

i=1

x2i + b
n∑

i=1

xixn−i+1, 其中 a, b ∈ R. 问 a, b 满足什么条件时 f 正定.

3. 设二次型 f(x1, x2, x3) = a(x21+x
2
2+x

2
3)+2x1x2−2x2x3+2x3x1. (1)问当 a取何值时, f 为正定二次型; (2)取 a = 1,

试用非退化线性替换把 f 化为规范型, 并写出所用线性替换; (3) 取 a = 1, 问当 b 取何值时, 矩阵 B =


1 0 0

0 −1 2

0 2 b


与 f 的矩阵 A 合同?
4. A,B 是 n 级正定矩阵, 证明 |A+B| ≥ |A|+ |B|.

27



正定矩阵

5. A 是 n 级正定矩阵, B 是 n 级非平凡半正定矩阵, 证明 |A+B| > max{|A|, |B|}.
6. 设 A,B 分别是 m× n 和 s× n 行满秩实矩阵, Q = ABT (BBT )−1BAT . 证明 AAT −Q 半正定.

7. 设 M =

(
A B

BT D

)
是 n 阶正定矩阵, 证明 |M | ≤ |A||D| 并说明取等号条件.

8. (Hadamard 不等式)A = (aij) 正定, 证明 |A| ≤ a11a22 · · · ann.
【编者注】本题对 Hermite 矩阵也成立, 因此这里没说 A 实对称.
9. A,B 是 n 阶正定矩阵, 证明: (1) AB 的特征值全大于零; (2) 若 A,B 可交换, 则 AB 也正定.
10. S 是 n 阶实对称正定矩阵. 证明: (1) 存在实对称正定矩阵 S1 使得 S2

1 = S, 并判断这样的 S1 是否唯一; (2) 若 A

是 n 阶是对称矩阵, 则 AS 的特征值都是实数.
11. (Riesz 表示定理) 设 V 是实数域上的 n 维线性空间, f(α, β) 是正定双线性函数. 证明对于任意 g ∈ V ∗, 存在唯一
的 α ∈ V 使得 g(β) = f(α, β), ∀β ∈ V .
12. A,B 是同阶实对称正定矩阵, A ≻ B, 问是否一定有 A2 ≻ B2? 若将条件和结论里的 ≻ 同时改为 ⪰ 呢?

12.2 解答

1. 记 αk = (3, 1, · · · , 1)T ∈ Rk,则A的 k阶顺序主子式为 |Ak| =

∣∣∣∣∣∣∣∣∣∣∣


b− 1

b− 1
...
b− 1

+


3

1
...
1


(
3 1 · · · 1

)
∣∣∣∣∣∣∣∣∣∣∣
=

|(b − 1)Ik + αkα
T
k | = (b − 1)k−1|(b − 1)I1 + αT

k αk| = (b − 1)k−1(b + k + 7), 因此 A 正定的充要条件是 |Ak| > 0, ∀k =

1, 2, · · · , n⇔ b > 1.

2. 当 n为奇数时, f 的矩阵为A =



a b
. . . . .

.

a b

a+ b

b a

. .
. . . .

b a


,且


|Aj | = aj (1 ≤ j ≤ k)

|Ak+1| = (a+ b)ak

|Ak+1+j | = (a+ b)ak−j(a2 − b2)j (1 ≤ j ≤ k)

,

其中 |Ak| 表示 k 阶顺序主子式. 因此 a > 0, a+ b > 0, a− b > 0 时 f 正定.

当 n 为偶数, f 的矩阵为 A =



a b
. . . . .

.

a b

b a

. .
. . . .

b a


, 且

 |Aj | = aj (1 ≤ j ≤ k)

|Ak+j | = ak−j(a2 − b2)j (1 ≤ j ≤ k)
. 因此 a > 0, a2 −

b2 > 0 时 f 正定.

3. (1) 二次型 f 的矩阵 A =


a 1 1

1 a −1

1 −1 a

, 各阶顺序主子式分别为 a, a2 − 1, (a+1)2(a− 2), 因此当 a > 2 时 f 正定.

(2) a = 1时,二次型 f = (x1+x2+x3)
2−4x2x3. 令


y1 = x1 + x2 + x3

y2 = x2 − x3

y3 = x2 + x3

,则有非退化线性替换


x1 = y1 − y2

x2 =
1

2
(y2 + y3)

x3 =
1

2
(−y2 + y3)

及规范型 f = y21 + y22 − y23 .
(3) 矩阵 B 对应的二次型为 g = x21 − x22 + bx23 + 4x2x3 = x21 − (x2 − 2x3)

2 + (b+ 4)x23, 因此当 b > −4 时两者合同.
4. 存在可逆矩阵 P 及正交矩阵 Q 使得 P TAP = In, QT (P TBP )Q = diag(µ1, · · · , µn), 其中 µi ≥ 0, ∀i = 1, 2, · · · , n.
令G = PQ,则GT (A+B)G = diag(1+µ1, · · · , 1+µn). 两边取行列式知 |A+B||P 2| = (1+µ1) · · · (1+µn) ≥ 1+µ1 · · ·µn,
即是 |A+B| ≥ (1 + µ1µ2 · · ·µn)|P |−2 = |A|+ |B|.
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5. 易知存在可逆矩阵 C 使得 CTAC = I, CTBC = diag(µ1, · · · , µn) := D 且 µi ≥ 0, ∀i = 1, · · · , n. 因此 |A + B| =
|C−TC−1+C−TDC−1| = |C−T (I+D)C−1| = |C−1|2|I+D| = |C−1|2(1+µ1)(1+µ2) · · · (1+µn). 而 |A| = |C−1|2, |B| =
|C−1|2µ1µ2 · · ·µn, 显然有 |A+B| > max{|A|, |B|}(因为 µ1, µ2, · · · , µn 不全为 0).
6. 由 A,B 行满秩知 rank(AAT ) = rank(A) = m, rank(BBT ) = rank(B) = s, 因此 AAT , BBT 都可逆. 易知分块矩阵(
AAT ABT

BAT BBT

)
=

(
A

B

)(
A

B

)T

是半正定矩阵, 且与
(
AAT −Q O

O BBT

)
合同, 因此 AAT −Q 半正定.

7. 利用主子式判别法知 A正定 (故 A−1正定),利用成对分块行列变换知D−BTA−1B正定且 |M | = |A||D−BTA−1B|.
由 αTBTA−1Bα = (Bα)TA−1(Bα) ≥ 0 知 BTA−1B 半正定. 利用第 5 题结论知 |D| = |D − BTA−1B + BTA−1B| ≥
|D −BTA−1B| 即 |M | = |A||D −BTA−1B| ≤ |A||D|, 取等号条件是 B = 0.

8. 只需证明 |A| ≤ |An−1|ann 即可,其中 |An−1|是 A的 n−1阶顺序主子式. 设 A =

(
An−1 β

βT ann

)
,由初等行列变换知

|A| = |An−1|(ann − βTA−1
n−1β). 由于 An−1 正定, 因此 βTA−1

n−1β ≥ 0, 因此 ann − βTA−1
n−1β ≤ ann, 即 |A| ≤ |An−1|ann.

9. (1) 设 A = CTC,B = DTD, 其中 C,D 是可逆矩阵, 则 AB = CTCDTD. 由于 CTCDTD 和 CDTDCT 有相同特

征值, 而后者是正定矩阵, 因此 AB 的特征值都大于零.
(2) 因为 AB = BA, 所以 (AB)T = BTAT = BA = AB, 因此由 (1) 的结论知是正定矩阵.
10. (1)设 S = PDP T , 其中 P 是正交矩阵, D 是对角元均为正数的对角矩阵. 可自然定义 D1 = D

1
2 , 则 S1 = PD1P

T .
下面证唯一性. 若还存在 S = S2

2 ,则 S1 和 S2 具有相同的特征值,也就会存在正交矩阵 P1, P2 使得 S1 = P1D1P
T
1 , S2 =

P2D1P
T
2 . 那么 S2

1 = S2
2 ⇒ D(P T

1 P2) = (P T
1 P2)D. 记 P = P T

1 P2 = (pij)n×n, 比较等式两边元素知 λipij = pijλj , 这也
意味着

√
λipij = pij

√
λj ⇒ D1P = PD1 ⇒ S1 = S2.

(2) 只需注意到 AS = AS2
1 与 S1AS1 有相同特征值, 而后者实对称矩阵.

11. 考虑子空间 Ker(g), 则存在 x0 ∈ Ker(g)⊥f , 并设 ∥x0∥f,2 = 1. 则 ∀x ∈ V 可分解为 x =
g(x)

g(x0)
x0 + y 使得 g(y) = 0.

等式两边同时和 x0 作用于 f 得到 f(x, x0) =
g(x)

g(x0)
f(x0, x0) + f(x0, y) =

g(x)

g(x0)
. 因此取 α = g(x0)x0 即可.

12. 都不一定. (1) A =

(
2 1

1 7

)
, B =

(
1 2

2 5

)
. (2) A =

(
4 1

1 2

)
, B =

(
3 0

0 1

)
.

13 SVD 分解, 极分解, Hermite 矩阵, 酉矩阵, 矩阵相似或合同的综合性问题

13.1 问题

1. 求矩阵 A =

(
1 0 1

0 1 2

)
的 SVD 分解、最佳秩 1 逼近、Moore-Penrose 逆 A+、左极分解和右极分解.

2. 称 A 是正规矩阵, 如果 A†A = AA†. 证明 A 可酉对角化当且仅当 A 是正规矩阵.
3. 设 A 是正规矩阵. 证明: (1) A 是酉矩阵当且仅当 A 的特征值模长均为 1; (2) A 是 Hermite 矩阵当且仅当 A 的特

征值均为实数; (3) A 是斜 Hermite 矩阵当且仅当 A 的特征值均为 0 或纯虚数.
4. 把迹为 0的 2级 Hermite矩阵组成的集合记为 V . (1)证明 V 是一个线性空间,并求维数和基. (2)对于 H1,H2 ∈ V ,
在 (1) 问基下坐标为 X1, X2, 定义内积 ⟨H1,H2⟩ = XT

1 X2. 设 A 是 2 级酉矩阵, 定义映射 A(H) = AHA−1, ∀H ∈ V .
证明 A 是 V 上的正交变换 (等距同构).
5. A,B 都是 n 级正规矩阵, 且 AB = BA, 证明 A,B 可同时酉对角化, 且 AB 也是正规矩阵.
6. A,B 都是实数域上的 n 级矩阵, AB = BA, 存在正整数 N 使得 AN = O. 证明 |A+B| = |B|.
7. A,B 都是实数域上的 n 级正交矩阵, 证明 |AB| = 1 当且仅当 n− rank(A+B) 是偶数.
8. A,B 都是复数域上的 n 级矩阵, AB −BA = A. 证明 A 的特征值都是 0, 且 A,B 有公共的特征向量.
9. n 级矩阵 A 的所有特征值互不相同, 证明若矩阵 B 满足 AB = BA, 则 B 可相似对角化, 且可表为 A 的多项式.
10. A 是实数域上的 n 级正定矩阵, 证明 min

B≻0,|B|=1

tr(AB)

n
= |A| 1

n .

11. A 是实数域上的 n 级正定矩阵, 非平凡向量 α ∈ Rn, 证明极限 lim
m→+∞

αTAm+1α

αTAmα
存在且等于 A 的某个特征值.

12. A 是实数域上的 n 级半正定矩阵, 且 A =

(
B C

CT D

)
, 其中 B 是 m 级方阵. 证明 rank(B,C) = rank(B).
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13.2 解答

1. 先求 AAT =

(
2 2

2 5

)
, 特征值为 6, 1, 对应单位特征向量是 1√

5
(1, 2)T ,

1√
5
(−2, 1)T , 因此 σ1 =

√
6, σ2 = 1, 计算得

U =


1√
5

− 2√
5

2√
5

1√
5

 , V =


1√
30

2√
30

5√
30

− 2√
5

1√
5

0

1√
6

2√
6

− 1√
6

 ,

因此 SVD 分解为 A = U2×2

(√
6 0 0

0 1 0

)
V3×3.

利用 SVD 分解的结果知其最佳秩 1 逼近是 σ1u1v
T
1 =

1

5

2

5
1

2

5

4

5
2

, A+ =

2∑
i=1

σ−1
i viu

T
i =


5

6
−1

3

−1

3

1

3
1

6

1

3

.

左极分解: 利用 SVD分解的结果知 PL =
√
AAT =

1√
5

(
1 −2

2 1

)(√
6 0

0 1

)
1√
5

(
1 2

−2 1

)
=

1

5

( √
6 + 4 2

√
6− 2

2
√
6− 2 4

√
6 + 1

)
,

再计算 UL = P−1
L A =

1

5
√
6

(
1 + 4

√
6 2− 2

√
6

2− 2
√
6 4 +

√
6

)(
1 0 1

0 1 2

)
=

1

5
√
6

(
1 + 4

√
6 2− 2

√
6 5

2− 2
√
6 4 +

√
6 10

)
.

右极分解: 先求ATA =


1 0 1

0 1 2

1 2 5

,特征值为 6, 1, 0,对应单位特征向量是 1√
30

(1, 2, 5)T ,
1√
5
(−2, 1, 0)T ,

1√
6
(−1,−2, 1)T ,

因此有 PR =
√
ATA =

1

5
√
6


1 + 4

√
6 2− 2

√
6 5

2− 2
√
6 4 +

√
6 10

5 10 25

, 再计算 UR = AP−1
R =

1

5
√
6

(
1 + 4

√
6 2− 2

√
6 5

2− 2
√
6 4 +

√
6 10

)
.

2. “⇒”: 存在酉矩阵 P , 使得 P−1AP = diag(λ1, · · · , λn). 两边取共轭转置知 P−1A†P = diag(λ̄1, · · · , λ̄n). 两式相乘
得到 P−1AA†P = diag(∥λ1∥22 · · · , ∥λn∥22) = P−1A†AP , 因此 A 正规.
“⇐”: 存在酉矩阵 P , 使得 T = P−1AP 是上三角矩阵. 由 A 正规知 P−1AA†P = P−1A†AP , 即 T 正规, 因此

t11 t12 · · · t1n

t22 · · · t2n
. . . ...

tnn




t̄11

t̄12 t̄22
...

... . . .
t̄1n t̄2n · · · t̄nn

 =


t̄11

t̄12 t̄22
...

... . . .
t̄1n t̄2n · · · t̄nn




t11 t12 · · · t1n

t22 · · · t2n
. . . ...

tnn

 .

比较两边系数知 tij = 0, ∀i ̸= j, 因此 T 对角, 从而 A 可酉对角化.
3. (1) A 是酉矩阵 ⇔ A−1 = A† ⇔ λ−1

i = λ̄i ⇔ ∥λi∥ = 1;
(2) A 是 Hermite 矩阵 ⇔ A† = A⇔ λ̄i = λi ⇔ λi ∈ R;
(3) A 是斜 Hermite 矩阵 ⇔ A† = −A⇔ λ̄i = −λi ⇔ Reλi = 0 ⇔ λi 是 0 或纯虚数.

4. (1) 容易证明 V 中的元素可表示为

(
x1 x2 + ix3

x2 − ix3 −x1

)
. 其中 x1, x2, x3 ∈ R. 线性空间只需验证对加法、乘法封

闭, 这是显然. 由上述表达式可以看出 dimV = 3, 一组基是
(
1 0

0 −1

)
,

(
0 1

1 0

)
,

(
0 i
−i 0

)
.

(2) 由于 tr(AHA−1) = tr(A−1AH) = tr(H) = 0, 且 A(H1 +H2) = A(H1) + A(H2), 因此 A 是 V 上的线性变换. 又
因为 ∥H∥22 = x21 + x22 + x23 = −|H|, 从而 ∥A(H)∥22 = −|AHA−1| = −|H| = ∥H∥22, 故 A 是正交变换.
5. 参考第 10 次习题课第 3 题 (2) 问.
6. 法 1(扰动法): 若 B 可逆, 则 AB−1 = B−1A⇒ (B−1A)N = (B−1)NAN = O, 因此矩阵 B−1A的特征值均为 0, 即矩
阵 I+B−1A特征值均为 1, 此时 |A+B| = |B(I+B−1A)| = |B||I+B−1A| = |B|. 若 B 不可逆, 则考虑 Bε := B+ εI.
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期末复习

由于多项式只有有限个根, 因此存在无穷多个 ε 使得 Bε 可逆, 此时有 |A + Bε| − |Bε| = 0. 该等式左边可以看成一个
关于 ε 的多项式, 有无穷多个根, 必然恒等于 0, 代入 ε = 0 知 |A+B| = |B|.
【编者注】一般数域 F 上的问题尽量不要出现极限, “趋向于 0” 这个说法可能没有定义.
法 2(矩阵法): 因为 A,B 可交换, 从而它们可同时酉上三角化, 即存在酉矩阵 B 使得 U †AU,U †BU 均为上三角矩阵.
由于 AN = O, 因此 U †AU 的对角线全 0. 因此 |U †(A+B)U | = |U †AU + U †BU | = |U †BU | ⇒ |A+B| = |B|.
7. 注意到 rank(A+ B) = rank(A(I + A−1B)) = rank(I + A−1B). 容易验证 A−1B 是正交矩阵 (当然也是酉矩阵), 因
此存在酉矩阵 U 使得 A−1B = Udiag(λ1, · · · , λn)U

†, 其中 |λi| = 1, ∀i = 1, · · · , n. 不妨设 λ1 = · · · = λr = −1, λr+1 ̸=
−1, · · · , λn ̸= −1, 从而 I + A−1B = Udiag(1 + λ1, · · · , 1 + λn)U

† ⇒ rank(I + A−1B) = n− r. 由于 A−1B 是实矩阵,

复数特征值成对出现, 因此 |A−1B| =
n∏

k=1

λk = (−1)r. 由于 |AB| = |A||B| = |A−1||B| = |A−1B|, 故 |AB| = 1 当且仅

当 r 是偶数, 即 n− rank(A+B) 是偶数.
8. 用数学归纳法容易证明 AkB −BAk = kAk, ∀k ∈ N+, 这表明 tr(Ak) = 0, ∀k ∈ N+. 设 A 的特征值为 λ1, λ2, · · · , λn,
由韦达定理知 λk

1 + λk
2 + · · ·+ λk

n = 0, ∀k ∈ N+, 这表明 λ1 = λ2 = · · · = λn = 0. 设 λ 是 B 的某个满足 λ− 1 不是 B

的特征值的特征值, η 是其对应的特征向量, 此时 BAη = (AB − A)η = (λ− 1)Aη. 由于 λ− 1 不是 B 的特征值, 只能
Aη = 0, 此时 η 即是 A,B 的公共特征向量.
9. 设可逆矩阵 Q 使得 Q−1AQ = diag(λ1, · · · , λn) := D. 注意到 D(Q−1BQ) = (Q−1BQ)D, 由此容易证明 Q−1BQ 也

为对角矩阵,设为 diag(b1, · · · , bn) := Λ. 设 B = c0I+c1A+· · ·+cn−1A
n−1,这等价于 Λ = c0I+c1D+· · ·+cn−1D

n−1(左
右两边同乘可逆矩阵), 即 

1 λ1 · · · λn−1
1

1 λ2 · · · λn−1
2

...
... . . . ...

1 λn · · · λn−1
n




c0

c1
...

cn−1

 =


b1

b2
...
bn

 ,

其系数行列式是 Vandermonde 行列式不为 0, 因此可解出唯一的系数.

10. 设正交矩阵 Q 使得 QTAQ = diag(λ1, · · · , λn) := D, 从而成立 tr(AB) = tr(QDQTB) = tr(DQTBQ) =

n∑
i=1

biλi,

这里 b1, · · · , bn 是 QTBQ 的对角元. 注意到 QTBQ 也是正定矩阵, 且由 Hadamard 不等式, |QTBQ| ≤
n∏

i=1

bi. 从而

LHS =
1

n

n∑
i=1

biλi ≥ n

Ã
n∏

i=1

(biλi) =
n

Ã
|D|

n∏
i=1

bi ≥ n

»
|D||QTBQ| = n

»
|D| = |A| 1

n = RHS.

取等号条件是 b1λ1 = · · · = bnλn, |B| = 1, 且 QTBQ 为对角阵时成立.
11. 设 A的 n个特征值 (记重数)是 λ1 ≥ · · · ≥ λn > 0, 对应的单位正交特征向量是 η1, · · · , ηn, 矩阵 P = (η1, · · · , ηn),
从而 P−1AP = diag(λ1, · · · , λn). 设 P−1α 在基 η1, · · · , ηn 下的坐标是 (x1, · · · , xn), 且第一个不为 0 的分量是 xk, 从

而
αTAm+1α

αTAmα
=
x2kλ

m+1
k + · · ·+ x2nλ

m+1
n

x2kλ
m
k + · · ·+ x2nλ

m
n

, 由数学分析知识知极限为 λk.

12. 只需证明方程组齐次线性方程组
(
B

CT

)
x = 0 和 Bx = 0 同解, 即 Bx = 0 的解都满足 CTx = 0. 任取 x0 ∈ KerB,

由于
(
x0 0

)( B C

CT D

)(
x0

0

)
= xT0Bx0 = 0 且

(
B C

CT D

)
半正定, 因此

(
B C

CT D

)(
x0

0

)
= 0, 即 CTx0 = 0.

【编者注】A 半正定, 不妨设 A = CTC, 则 xTAx = 0 ⇒ xTCTCx = 0 ⇒ ∥Cx∥22 = 0 ⇒ Cx = 0 ⇒ Ax = CTCx = 0.

14 期末复习

14.1 问题

1. 在实数域上, (1) A,B 特征值相同, 问是否一定相似? 若 A,B 都是实对称矩阵呢? (2) 对称矩阵 A 可逆且特征值均

为实数, 问 A 与 A−1,−A 是否合同?
2. 证明对任意实对称 A, 存在实数 x, y, 使得 A+ xI 和 I + yA 都是正定矩阵.
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3. 矩阵 A =


2 0 1

3 1 a

4 0 5

 可相似对角化, 求 a 的值并计算 A2025.

4. 二次型 f(x, y, z) = λ(x2 + y2 + z2)− 2xy− 2xz+2yz. 讨论 λ 的取值, 使其 (1) 正定; (2) 负定; (3) 可写成一次多项
式的平方.
5. 二次型 f(x1, x2, x3) = 2x21 + x22 − 4x1x2 − 4x2x3. (1) 写出对应的矩阵 A, 并求三阶正交矩阵 Q 使得 QTAQ 是对角

矩阵; (2) 设矩阵 B = tI −A, 求 t 的取值范围使 B 正定; (3) 求 f 在单位球面上的最值.
6. (1) 设 n 阶正定矩阵 A 的对角元 aii ≡ 1, ∀i = 1, · · · , n, 且 |A| = 1. 证明 A 是单位阵.
(2) 实矩阵 A = (α1, · · · , αn), 且 ∥α1∥2 = · · · = ∥αn∥2 = 1. 证明若 |A| = ±1, 则 A 是正交矩阵.
7. A,B 都是数域 F 上的 n级可逆矩阵,证明对于 F 上的任意矩阵 X,Y ,成立 rank(B−Y A−1X) = rank(A−XB−1Y ).
8. 实矩阵 A 幂等. 证明 A 可对角化, 并可分解为实对称矩阵 B 和正定矩阵 C 的乘积. 判断分解的唯一性.
9. 给定 n 阶正定矩阵 A 及非平凡向量 α ∈ Rn, 令 B = AααT . (1) 求矩阵 B 的特征值以及属于最大特征值的特征子

空间的一组基; (2) 判断 B 是否可对角化.
10. A 是 n 级非平凡矩阵, 且对任意 n 级矩阵 B 都有 rank(AB) = rank(BA), 证明 A 可逆.
11. 在实数域上, A是 m×n矩阵, B 是 n×p矩阵, 证明 tr((AB)(AB)T ) ≤ c · tr(AAT ), 其中 c是 BBT 最大的特征值.
12. (Löewner-Heinz 不等式) A ⪰ B ≻ 0, 证明 A

1
2 ⪰ B

1
2 .

14.2 解答

1. (1) 不一定, 比如 A =

(
1 0

0 1

)
, B =

(
1 1

0 1

)
. 若 A,B 都是实对称则相似, 因为存在正交矩阵 C,D 使得 CAC−1 =

DBD−1 = diag(λ1, · · · , λn),从而 D−1CA(D−1C)−1 = B. (2) A与 A−1合同,因为 |λI−A−1| = (−λ)n|A−1||λ−1I−A|,
取倒数不改变特征值正负性; A 与 −A 不一定合同, 因为 |λI +A| = (−1)n|(−λ)I −A|, 所有特征值全部反号.
2. 存在正定矩阵 P 使得 P−1AP = diag(λ1, · · · , λn), 直接计算得到 A+xI = Pdiag(λ1+x, · · · , λn+x)P

−1, I+ yA =

Pdiag(1 + λ1y, · · · , 1 + λny)P
−1, 因此只需令 x = max

i=1,··· ,n
|λi|+ 1 和 y = 0 即可.

3. 特征多项式 λ3 − 8λ2 + 13λ− 6 = 0 得到特征值 λ = 6, 1(两重), 因此只需让 rank(I − A) = 1 ⇔ a = 3. 解得对应的

特征向量是 (1, 3, 4)T , (0, 1, 0)T , (1, 0,−1)T , 因此 A =


1 0 1

3 1 0

4 0 −1



6

1

1



1 0 1

3 1 0

4 0 −1


−1

. 利用该分解可以计算

出 A2025 =


1 0 1

3 1 0

4 0 −1



62025

1

1



1 0 1

3 1 0

4 0 −1


−1

=
1

5


62025 + 4 0 62025 − 1

3 · 62025 − 3 5 3 · 62025 − 3

4 · 62025 − 4 0 4 · 62025 + 1

.

4. 对应矩阵 A =


λ −1 −1

−1 λ 1

−1 1 λ

. (1) 正定当且仅当顺序主子式大于 0, 即 λ > 0, λ2 − 1 > 0, λ3 − 3λ+2 > 0, 这表明

λ > 1. (2) 负定当且仅当 −A 的顺序主子式大于 0, 即 −λ > 0, λ2 − 1 > 0,−λ3 + 3λ− 2 > 0, 这表明 λ < −2. (3) 可写
成一次多项式的平方当且仅当 rank(A) = 1, 此时 λ = 1.

5. (1) A =


2 −2 0

−2 1 −2

0 −2 0

. Q 是特征向量拼成的正交矩阵, 计算得特征值为 4, 1,−2, Q =
1

3


2 2 1

−2 1 2

1 −2 2

. (2) 由

第 1 问特征值知 t ≥ 4. (3) 由第 1 问特征值知最大值是 4, 最小值是 −2 (回顾 λminX
TX ≤ XTAX ≤ λmaxX

TX).
6. (1) 利用 Hadamard 不等式取等号条件 (第 12 次习题课第 7,8 题). (2) 对矩阵 ATA 用第 1 问结论.

7. 利用分块矩阵的行列变换有
(
B Y

X A

)


1⃝−=Y A−1∗ 2⃝−→

B − Y A−1X O

X A

 −→
1⃝−= 2⃝∗A−1X

=

B − Y A−1X O

O A


2⃝−=XB−1∗ 1⃝−→

B Y

O A−XB−1Y

 −→
2⃝−= 1⃝∗B−1Y

=

B O

O A−XB−1Y

 ,
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因此 rank(A) + rank(B − Y A−1X) = rank(B) + rank(A−XB−1Y ). 由于 A,B 都满秩, 有原题结论.

8. 幂等矩阵都可对角化 (期中考试内容). 设 A = D

(
Ir

On−r

)
D−1, 则可取 B = D

(
Ir

On−r

)
DT , C = D−TD−1

满足题意. 唯一性显然没有, 因为
(
1 0

0 0

)
=

(
1 0

0 0

)(
1 0

0 k

)
, k ∈ R+ 可任取.

【编者注】实方阵可分解为实对称阵与正定阵的乘积当且仅当其在实数域上可对角化.
9. (1)首先利用XY 的特征值和 Y X 的特征值相同知 B非零特征值仅有 αTAα. 其次注意到 0 < rank(B) ≤ rank(α) =
1 ⇒ rank(B) = 1, 因此 0 是 B 的 n− 1 重特征值. 故 B 有特征值 αTAα(1 重) 和 0(n− 1重). 注意到 αTAα > 0, 因
此最大特征值对应的特征子空间是 (αTAαI − B)X = 0 的解. 注意到 BAα = AααTAα = Aα(αTAα), 故其一组基是
{Aα}. (2) 可对角化, 因为特征值 0 的几何重数是 n− 1.

10. 若 A不可逆,则存在 r < n和可逆矩阵 P,Q使得 A = P

(
Ir

On−r

)
Q. 构造 B = Q−1Er,r+1P

−1,则 rank(AB) =

1, rank(BA) = 0.

11. 我们回顾特征值的极小-极大刻画: λk = min
V⊂Rn,dimV=n−k+1

max
0 ̸=X∈V

XTAX

XTX
. 考察 (AB)(AB)T 的第 k 大特征值, 有

λk((AB)(AB)T ) = min
V⊂Rn,dimV=n−k+1

max
∥X∥2=1

XTABBTATX ≤ min
V⊂Rn,dimV=n−k+1

max
∥X∥2=1

cXTAATX = cλk(AA
T ),

其中不等式利用了 XTCX ≤ λ1(C)X
TX. 利用实对称矩阵的迹是其所有特征值的和, 两边对 k 求和得到原命题.

【编者注】本题也可以使用 SVD 分解来证明.
12. 法 1(矩阵法): 由于 A ⪰ B, 因此 B− 1

2AB− 1
2 ⪰ I, 这表明 B− 1

2AB− 1
2 的特征值均大于等于 1. 注意到 B− 1

2AB− 1
2 =

(A
1
2B− 1

2 )T (A
1
2B− 1

2 ), 且 A
1
2B− 1

2 的特征值均为正数 (正定矩阵乘正定矩阵), 故 A
1
2B− 1

2 的特征值均大于等于 1. 这表
明 B− 1

4A
1
2B− 1

4 ⪰ I(两者特征值相同), 即 A
1
2 ⪰ B

1
2 .

【编者注】可以利用类似的方法说明 {p ∈ [0, 1] : Ap ⪰ Bp} 构成凸集, 进而可证 ∀p ∈ [0, 1], 有 Ap ⪰ Bp.

法 2(积分法): 利用积分恒等式
√
x =

2

π

ˆ ∞

0

(
1− t2

t2 + x

)
dt 知 A

1
2 =

2

π

ˆ ∞

0

(I − t2(t2I +A)−1)dt. 因此考察

A
1
2 −B

1
2 =

2

π

ˆ ∞

0

t2[(t2I +B)−1 − (t2I +A)−1]dt.

由于 A ⪰ B, 因此 t2I +A ⪰ t2I +B, (t2I +A)−1 ⪯ (t2 +B)−1, 从而代入积分恒等式知 A
1
2 ⪰ B

1
2 .

【编者注】对于 p ∈ [0, 1], 可利用积分恒等式 xp =
sin(pπ)
π

ˆ ∞

0

x

x+ t
tp−1dt.
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