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定积分的基本概念与可积性

1 定积分的基本概念与可积性

1.1 问题

1. lim
n→+∞

an
nα

= 1, α > 0, 求 lim
n→+∞

1

n1+α
(a1 + a2 + · · ·+ an).

2. 设函数 f(x) 在区间 [a, b] 上有界, 试证明 f(x) ∈ R[a, b] 的充要条件是: ∀ε > 0, ∃[a, b] 上满足以下条件的连续函数

g(x) 和 h(x): (1) g(x) ≤ f(x) ≤ h(x), ∀x ∈ [a, b]; (2)
ˆ b

a

[h(x)− g(x)]dx < ε.

3. 函数 g(x) ∈ R[a, b], f(u) ∈ C[A,B], 这里 A,B 分别是 g(x) 在区间 [a, b] 的上下确界. 证明 f(g(x)) ∈ R[a, b].
4. 函数 f(x) ∈ R[a, b], 证明存在点 x0 ∈ (a, b) 使得 f(x) 在 x0 处连续.

5. 函数 f(x) ∈ R[a, b], 且 ∀x ∈ [a, b] 有 f(x) > 0. 证明
ˆ b

a

f(x)dx > 0.

6. 函数 f(x) 在 R 上有定义, 且在任何有限闭区间上可积. 证明对于任意的 [a, b], lim
h→0

ˆ b

a

[f(x+ h)− f(x)]dx = 0.

7. (Hölder不等式). 非负函数 f(x), g(x) ∈ R[a, b], p, q > 1,
1

p
+
1

q
= 1. 证明

ˆ b

a

f(x)g(x)dx ≤

(ˆ b

a

fp(x)

) 1
p
(ˆ b

a

gq(x)

) 1
q

.

(编者注: 本题实际上是 ‖f‖p‖g‖q ≥ ‖fg‖1.)
[一个简单应用, 留作思考题] 0 < q ≤ p ≤ s ≤ ∞, 那么存在 θ ∈ [0, 1] 使得

1

p
=
θ

q
+

1− θ

s
. 证明 ‖f‖p ≤ ‖f‖θq‖f‖1−θ

s .

8. (Minkowski 不等式). 同上题条件, 证明
(ˆ b

a

(f + g)p(x)dx
) 1

p

≤

(ˆ b

a

fp(x)dx
) 1

p

+

(ˆ b

a

gp(x)dx
) 1

p

.

(编者注: 本题实际上是 ‖f‖p + ‖g‖p ≥ ‖f + g‖p, 这表明 Lp 空间是赋范线性空间.)
■ 自由选讲.

9. f(x) 在 [a, b] 的每一点处的极限都是 0, 证明 f(x) ∈ R[a, b] 且

ˆ b

a

f(x)dx = 0.

10. 已知 (0, 1) 上的单调函数 f(x) 满足 lim
n→+∞

n−1∑
k=1

1

n
f

(
k

n

)
存在, 问是否有 f(x) ∈ R[0, 1]?

11. 计算极限 lim
n→+∞

[1α + 3α + · · ·+ (2n+ 1)α]β+1

[2β + 4β + · · ·+ (2n)β]α+1
.

12. n ∈ N+, f(x) ∈ C[a, b],

ˆ b

a

xkf(x)dx = 0, k = 0, 1, · · · , n. 证明 f(x) 在 (a, b) 内至少有 n+ 1 个零点.

1.2 解答

1. ∀ε > 0, ∃N, ∀n > N,nα(1− ε) < an < nα(1+ ε). 从而当 n 足够大时, 1

n1+α
(1α+2α+ · · ·+Nα) < ε,

1

n1+α
(a1+a2+

· · ·+aN ) < ε,

∣∣∣∣ 1

n1+α
[(aN+1 − (N + 1)α) + · · ·+ (an − nα)]

∣∣∣∣ ≤ ε

n1+α
[(N+1)α+· · ·+nα] ≤ ε

n1+α

n∑
i=1

iα =
ε

n

n∑
i=1

(
i

n

)α

≤

ε

ˆ 1

0

xαdx+ ε =
ε

α+ 1
+ ε ≤ 2ε. 这意味着

∣∣∣∣∣ 1

n1+α

(
n∑

i=1

ai −
n∑

i=1

iα

)∣∣∣∣∣ ≤ 4ε⇒ 原极限 = lim
n→+∞

1

n1+α

n∑
i=1

iα =
1

α+ 1
.

2. 必要性: f(x) ∈ R[a, b] ⇒ ∀ε > 0, ∃ 分割 ∆ : a = x0 < x1 < · · · < xn = b s.t.
n∑

i=1

ωi(xi − xi−1) <
ε

2
⇒ ∃ 阶梯函数

s1(x), s2(x) 满足 s1(x) ≤ f(x) ≤ s2(x) 且

ˆ b

a

[s2(x)− s1(x)]dx <
ε

2
⇒ ∃ 连续函数 g(x), h(x) 满足 g(x) ≤ f(x) ≤ h(x)

且

ˆ b

a

[h(x)− g(x)] < ε.

充分性: g(x)连续,
ˆ b

a

[h(x)−g(x)]dx < ε

4
⇒ ∃分割∆ : a = x0 < x1 < · · · < xn = b s.t.

n∑
i=1

sup
x∈[xi−1,xi]

{h(x)−g(x)}(xi−

xi−1) <
ε

2
且

n∑
i=1

wg
i (xi−xi−1) <

ε

2
. 在此分割下,

n∑
i=1

wf
i (xi−xi−1) ≤

n∑
i=1

[
sup

x∈[xi−1,xi]

h(x)− inf
x∈[xi−1,xi]

g(x)

]
(xi−xi−1) ≤

n∑
i=1

[
sup

x∈[xi−1,xi]

{h(x)− g(x)}+ wg
i

]
(xi − xi−1) ≤

ε

2
+
ε

2
= ε.
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定积分的基本概念与可积性

3. 用 Lebesgue 定理显然. 如不用 Lebesgue 定理, 则 ∀δ > 0, ∃τ > 0 s.t. ∀|x− x′| < τ, |f(x)− f(x′)| < δ. 从而 ∀ε > 0,
∃ 分割 ∆ : a = x0 < x1 < · · · < xn = b s.t.

∑
wg

i >τ

(xi − xi−1) < ε. 因为 {[xi−1, xi] : w
f◦g
i > δ} ⊂ {[xi−1, xi] : w

g
i > τ}, 从

而
∑

wf◦g
i >δ

(xi − xi−1) ≤
∑
wg

i >τ

(xi − xi−1) < ε, 即 f ◦ g 可积.

4. 由 f(x) ∈ R[a, b] 知存在 [a1, b1] ⊂ (a, b), 使得 wf
[a1,b1]

< 1. 同样的道理, 由 f(x) ∈ R[a1, b1] 知存在 [a2, b2] ⊂ (a1, b1)

使得 wf
[a2,b2]

<
1

2
. 依此类推, 存在一系列闭区间套满足于 wf

[an,bn]
<

1

n
, 只需取 x0 ∈ ∩+∞

n=1[an, bn] 即可.

5. 由 4 题知存在连续点 x0 ∈ (a, b), 因此 ∃δ > 0 s.t. ∀x ∈ [x0 − δ, x0 + δ] ⊂ [a, b], f(x) > f(x0)

2
. 从而

ˆ b

a

f(x)dx ≥
ˆ x0+δ

x0−δ

f(x)dx ≥ f(x0)δ > 0.

6. ∀ε > 0, 存在连续函数 g(x) 满足

ˆ b+1

a−1

|f(x)− g(x)|dx < ε

3
. 因此∣∣∣∣∣

ˆ b

a

[f(x+ h)− f(x)]dx
∣∣∣∣∣ ≤

∣∣∣∣∣
ˆ b

a

[f(x+ h)− g(x+ h)]dx
∣∣∣∣∣+
∣∣∣∣∣
ˆ b

a

[g(x+ h)− g(x)]dx
∣∣∣∣∣+
∣∣∣∣∣
ˆ b

a

[g(x)− f(x)]dx
∣∣∣∣∣

≤ 2

ˆ b+1

a−1

|f(x)− g(x)|dx+

ˆ b

a

|g(x+ h)− g(x)|dx.

由一致连续性知 ∃H > 0 s.t. ∀x, x′ ∈ [a− 1, b+ 1], |x− x′| < H, |g(x)− g(x′)| < ε

3(b− a)
. 取 h < H 知 RHS < ε. 这

意味着原极限为 0.

7. WLOG
(ˆ b

a

fp(x)dx
) 1

p

=

(ˆ b

a

gq(x)dx
) 1

q

= 1, 则原命题的结论可改写为
ˆ b

a

f(x)g(x)dx ≤ 1. 由 lnx 的凹性, 我

们有 α ln a+ (1− α) ln b ≤ ln(αa+ (1− α)b) ⇔ aαb1−α ≤ αa+ (1− α)b. 令 α =
1

p
, 1− α =

1

q
, a = xp, b = yq ⇒ xy ≤

xp

p
+
yq

q
⇒
ˆ b

a

f(x)g(x)dx ≤
ˆ b

a

(
f(x)p

p
+
g(x)q

q

)
dx =

1

p
+

1

q
= 1.

(编者注: 本题也可将积分离散化后使用离散版本的 Hölder 不等式.)

8. 由 Hölder 不等式,
ˆ b

a

(f + g)pdx =

ˆ b

a

(f + g)p−1fdx+
ˆ b

a

(f + g)p−1gdx ≤

(ˆ b

a

(f + g)(p−1)qdx
) 1

q
(ˆ b

a

fpdx
) 1

p

+(ˆ b

a

(f + g)(p−1)qdx
) 1

q
(ˆ b

a

gpdx
) 1

p

=

(ˆ b

a

(f + g)pdx
) 1

q

(ˆ b

a

fpdx
) 1

p

+

(ˆ b

a

gpdx
) 1

p

. 消去
(ˆ b

a

(f + g)pdx
) 1

q

得到原不等式.
(编者注: 本题也可将积分离散化后使用离散版本的 Minkowski 不等式.)
9. 由聚点原理知有界性, 即 |f(x)| ≤M . 其次 ∀ε > 0, ∀x ∈ [a, b], ∃δx > 0, s.t. ωU0(x,δx) < ε. 开覆盖 ∪x∈[a,b](x− δx, x+
δx) ⊃ [a, b],因此存在两两无包含关系的有限子覆盖 ∪n

i=1(xi−δi, xi+δi) ⊃ [a, b]. 不妨设 a ≤ x1 < · · · < xn ≤ b. 取分割
点 y0 = a, y3i+1 = xi−

ε

4nM
, y3i+2 = xi+

ε

4nM
, y3i+3 ∈ (xi−δi, xi+δi)∩(xi+1−δi+1, xi+δi+1), y3n = b, i = 1, 2, · · · , n−1.

对此分割,
3n∑
i=1

ωi∆xi < ε(b−a+1),因此有可积性. 由于
∣∣∣∣∣
ˆ b

a

f(x)dx
∣∣∣∣∣ ≤
ˆ b

a

|f(x)|dx ≤
3n∑
i=1

ˆ yi

yi−1

|f(x)|dx ≤ ε(b−a+1),

由 ε 的任意性知

ˆ b

a

f(x)dx = 0.

10. 考虑 f(x) = tan
(
πx− π

2

)
. lim

n→+∞

n−1∑
k=1

1

n
f

(
k

n

)
= 0, 但是

ˆ 1

0

f(x)dx 不存在.

11. 原式 = 2α−β

[
2
n

(
1
n

)α
+ 2

n

(
3
n

)α
+ · · ·+ 2

n

(
2n+1

n

)α]β+1[
2
n

(
2
n

)β
+ 2

n

(
4
n

)β
+ · · ·+ 2

n

(
2n
n

)β]α+1

定积分定义→ 2α−β

(´ 2

0
xαdx

)β+1

(´ 2

0
xβdx

)α+1 = 2α−β (β + 1)α+1

(α+ 1)β+1
.

12.
ˆ b

a

f(x)dx = 0 ⇒ 存在至少 1 个零点, 记为 x1.
ˆ b

a

(x− x1)f(x)dx = 0 ⇒ 存在至少 2 个零点, 记另一个为 x2. 依

此类推,
ˆ b

a

[
n∏

i=1

(x− xi)

]
f(x)dx = 0 ⇒ 存在至少 n+ 1 个零点.
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定积分的性质与计算

2 定积分的性质与计算

2.1 问题

1. f(x) ∈ C[−1, 1], 证明 lim
n→+∞

´ 1

−1
(1− x2)nf(x)dx´ 1

−1
(1− x2)ndx

= f(0).

2. (Riemann-Lebesgue 引理). 设函数 f(x), g(x) 在 R 上有定义且内闭可积, g(x+ T ) = g(x), 证明

lim
n→+∞

ˆ b

a

f(x)g(nx)dx =

ˆ b

a

f(x)dx 1

T

ˆ T

0

g(x)dx.

3. 设函数 f(x) ∈ C1[a, b] 且 f(a) = f(b) = 0, 证明: (1)
ˆ b

a

xf(x)f ′(x)dx = −1

2

ˆ b

a

f2(x)dx; (2) 若
ˆ b

a

f2(x)dx = 1,

则

ˆ b

a

[f ′(x)]2dx
ˆ b

a

[xf(x)]2dx ≥ 1

4
.

■ 自由选讲.
4. f(x), g(x) 在 [0, 1] 上非负连续. (1) 若 f2(t) ≤ 1+ 2

ˆ t

0

f(s)ds, 证明 f(t) ≤ 1+ t. (2) 若 f(t) ≤ K +

ˆ t

0

f(s)g(s)ds,

其中 K ≥ 0 是常数, 证明 f(1) ≤ K exp
(ˆ 1

0

g(s)ds
)
.

5. 试构造 f(x) ∈ D[0, 1] 但 f ′(x) 6∈ R[0, 1] 的例子. 如果额外加上 f ′(x) 有界条件呢?
6. 试构造可积函数 f 和连续函数 g 使得 f ◦ g 不可积. 如果额外要求 g 是 C∞ 函数呢?
7. 设函数 f(x), g(x) ∈ R[a, b],记 ∆ : a = x0 < x1 < · · · < xn = b为 [a, b]的一个分割, λ(∆) = max

1≤i≤n
{∆xi = xi−xi−1}.

任取 ξi, ηi ∈ [xi−1, xi], 证明 lim
λ(∆)→0

n∑
i=1

f(ξi)g(ηi)∆xi =

ˆ b

a

f(x)g(x)dx.

8. f(x) ∈ C[a, b], 且 ∃δ > 0,M > 0, s.t.∀[α, β] ⊂ [a, b]成立

∣∣∣∣∣
ˆ β

α

f(x)dx
∣∣∣∣∣ ≤M(β − α)1+δ. 证明 f(x) ≡ 0.

9. f(x) 在 R 上有定义且内闭可积, 且 f(x+ y) = f(x) + f(y). 证明 f(x) = xf(1).

10. 求积分 I =

ˆ π
2

0

sinx ln sinxdx.

11. 求积分 In =

ˆ π
2

0

sin2 nx

sinx dx, 并求极限 lim
n→+∞

In
lnn .

12. 求积分 I =

ˆ π
4

−π
4

cos2 x
1 + e−x

dx.

2.2 解答

1. 往证 lim
n→+∞

´ 1

−1
(1− x2)n[f(x)− f(0)]dx´ 1

−1
(1− x2)ndx

= 0.

设 max
x∈[−1,1]

|f(x)| ≤M . 由连续性知 ∀ε > 0, ∃δ > 0, s.t. ∀x ∈ (−δ, δ), |f(x)− f(0)| < ε.

注意到

´ 1

−1
(1− x2)nf(x)dx´ 1

−1
(1− x2)ndx

=

´ δ

−δ
(1− x2)n[f(x)− f(0)]dx´ 1

−1
(1− x2)ndx

+

´ −δ

−1
(1− x2)n[f(x)− f(0)]dx´ 1

−1
(1− x2)ndx

+

´ 1

δ
(1− x2)n[f(x)− f(0)]dx´ 1

−1
(1− x2)ndx

:= I1 + I2 + I3.

其中, |I1| ≤
´ δ

−δ
(1− x2)nεdx´ 1

−1
(1− x2)ndx

≤ ε,

|I2| ≤ 2M

´ −δ

−1
(1− x2)nεdx´ 1

−1
(1− x2)ndx

≤ 2M
(1− δ)(1− δ2)n´ δ

2

− δ
2

(1− x2)ndx
≤ 2M(1− δ)

(1− δ2)n

δ(1− δ2

4
)n

= 2M
1− δ

δ

(
4− 4δ2

4− δ2

)n

.

由于
4− 4δ2

4− δ2
< 1, 从而可取足够大的 n 使得 |I2| < ε. 类似放缩 I3. 此时 |I1 + I2 + I3| < 3ε.
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定积分的性质与计算

2. WLOG 设
ˆ T

0

g(x)dx = 0, 否则考虑 h(x) = g(x)− 1

T

ˆ T

0

g(x)dx.

∀ε > 0, 存在阶梯函数 sε(x) =



C1 a = x0 ≤ x < x1

C2 x1 ≤ x < x2

· · ·

Cm xm−1 ≤ x ≤ xm = b

使得

ˆ b

a

|f(x)− sε(x)|dx < ε. 设 M = sup
x∈[0,T ]

|g(x)|. 则

∣∣∣∣∣
ˆ b

a

f(x)g(nx)dx
∣∣∣∣∣ =

∣∣∣∣∣
ˆ b

a

(f(x)− sε(x))g(nx)dx+

ˆ b

a

sε(x)g(nx)dx
∣∣∣∣∣

≤
ˆ b

a

|f(x)− sε(x)|g(nx)dx+

∣∣∣∣∣
m∑
i=1

Ci

ˆ xi

xi−1

g(nx)dx
∣∣∣∣∣

≤Mε+
1

n

m∑
i=1

Ci

ˆ nxi

nxi−1

g(x)dx ≤Mε+
1

n

m∑
i=1

CiMT.

其中最后一个等式利用了

ˆ T

0

g(x)dx = 0,这也意味着
ˆ d

c

g(x)dx =

ˆ c+T

c

g(x)dx+
ˆ c+2T

c+T

g(x)dx+ · · ·+
ˆ d

c+kT

g(x)dx

(设 c+ kT ≤ d < c+ (k + 1)T ) =
ˆ d

c+kT

g(x)dx ≤MT , 对于 ∀c, d ∈ R.

选择一个足够大的 n, 使得 1

n

m∑
i=1

CiMT < ε. 从而
∣∣∣∣∣
ˆ b

a

f(x)g(nx)dx
∣∣∣∣∣ ≤ (M + 1)ε. 由极限定义立得结论.

3. (1) 由分部积分,
ˆ b

a

xf(x)f ′(x)dx = xf2(x)|ba −
ˆ b

a

f(x)[xf(x)]′dx = −
ˆ b

a

f2(x)dx−
ˆ b

a

xf(x)f ′(x)dx

⇒
ˆ b

a

xf(x)f ′(x)dx = −1

2

ˆ b

a

f2(x)dx.

(2) 由 Cauchy 不等式立得.

4. (1) 原条件等价于 f(t)»
1 + 2

´ t

0
f(s)ds

≤ 1
两边积分⇒

ˆ x

0

f(t)»
1 + 2

´ t

0
f(s)ds

dt ≤
ˆ x

0

1dt 原函数⇒

 
1 + 2

ˆ t

0

f(s)ds
∣∣∣∣∣
x

0

≤ x ⇒ 
1 + 2

ˆ x

0

f(s)ds ≤ 1 + x⇒ f(x) ≤
 
1 + 2

ˆ x

0

f(s)ds ≤ 1 + x.

(2) 注意到[ˆ t

0

f(s)g(s)ds exp
(
−
ˆ t

0

g(s)ds
)]′

= f(t)g(t) exp
(
−
ˆ t

0

g(s)ds
)
− g(t)

ˆ t

0

f(s)g(s)ds exp
(
−
ˆ t

0

g(s)ds
)

≤ Kg(t) exp
(
−
ˆ t

0

g(s)ds
)

=

[
K −K exp

(
−
ˆ t

0

g(s)ds
)]′

,

两边积分得到
ˆ 1

0

f(s)g(s)ds exp
(
−
ˆ 1

0

g(s)ds
)

≤ K−K exp
(
−
ˆ 1

0

g(s)ds
)

⇒ f(1) ≤ K+K

ˆ 1

0

f(s)g(s)ds ≤ K exp
(ˆ 1

0

g(s)ds
)
.

(请大家在积分时注意从相同起点开始积分, 这里补上常数 K 也是为了保证两边在 t = 0 处都取 0. 这个题有微分方程
背景, 可以先看懂答案, 再试图理解.)

5. 可以验证 f(x) =

 x2 sin 1

x2
, x 6= 0

0, x = 0
∈ D[0, 1], 但 f ′(x) =

 2x sin 1

x2
− 2

x
cos 1

x2
, x 6= 0

0, x = 0
在 [0, 1] 上无界. 若额外

有 f ′(x) 有界, 可参考 Volterra’s function.

6. 设 C 是 fat cantor set. 考虑 f(x) =

 0, x < 1

1, x = 1
, g(x) = 1− dist(x, C), 但 f(g(x)) = 1x∈C 在正测集 C 上不连续. 若

额外有 g(x) ∈ C∞, 可使用光滑版本的 Urysohn 引理.
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定积分中值定理, 定积分的应用 (1)

7.
n∑

i=1

f(ξi)g(ηi)∆xi =
n∑

i=1

f(ξi)g(ξi)∆xi+
n∑

i=1

f(ξi)[g(ηi)− g(ξi)]∆xi := S1+S2. 显然 lim
λ(∆)→0

S1 =

ˆ b

a

f(x)g(x)dx. 记

max
x∈[a,b]

|f(x)| =Mf . 由 g(x) 的可积性, 知 |S2| ≤
n∑

i=1

Mfωg([xi−1, xi])∆xi =Mf [Sg(∆)− Sg(∆)]
λ(∆)→0→ 0.

8. 不妨设 ∃x0 s.t. f(x0) > 0. 由连续性, ∃κ > 0, s.t. ∀x ∈ (x0−κ, x0+κ), f(x) >
f(x0)

2
. 从而 ∀[α, β] ⊂ (x0−κ, x0+κ),

成立

∣∣∣∣∣
ˆ β

α

f(x)dx
∣∣∣∣∣ > f(x0)

2
(β − α) > M(β − α)1+δ(最后一个大于号成立只需令 β − α <

(
f(x0)

2M

) 1
δ

), 矛盾.

9. 只需证明对无理数点成立. 考察 α ∈ R\Q. 由有理数点的稠密性,
ˆ α

0

f(x)dx =
α2

2
f(1). 由集合 {qα : q ∈ Q} 的稠

密性且 f(qα) = qf(α),
ˆ α

0

f(x)dx = f(α)
α

2
. 因此 f(α)

α

2
=
α2

2
f(1) ⇒ f(α) = αf(1).

10. I =

ˆ π
2

0

ln sinxd(1 − cosx) 分部积分= (1 − cosx) ln sinx
∣∣π2
0
−
ˆ π

2

0

(1 − cosx)d(ln sinx) = −
ˆ π

2

0

(1 − cosx)cosxsinx dx =

−
ˆ π

2

0

sinx cosx
1 + cosx dx =

ˆ π
2

0

(
− sinx+

sinx
1 + cosx

)
dx = [cosx− ln(1 + cosx)]

∣∣π2
0
= ln 2− 1.

11. 利用三角函数公式,

In =

ˆ π
2

0

1− cos(2nx)
2 sinx dx =

ˆ π
2

0

1− cos[(2n− 2)x] cos 2x+ sin[(2n− 2)x] sin 2x
2 sinx dx

=

ˆ π
2

0

1− cos[(2n− 2)x](1− 2 sin2 x) + 2 sin[(2n− 2)x] sinx cosx
2 sinx dx

=

ˆ π
2

0

1− cos[(2n− 2)x]

2 sinx dx+

ˆ π
2

0

2 sin2 x cos[(2n− 2)x] + 2 sin[(2n− 2)x] sinx cosx
2 sinx dx

= In−1 +

ˆ π
2

0

sinx cos[(2n− 2)x] + sin[(2n− 2)x] cosxdx = In−1 +

ˆ π
2

0

sin(2n− 1)xdx

= In−1 −
1

2n− 1
cos[(2n− 1)x]

∣∣π2
0
= In−1 +

1

2n− 1
.

由于 I1 = 1, 因此 In =
n∑

i=1

1

2i− 1
, 从而 lim

n→+∞

In
lnn = lim

n→+∞

2n∑
i=1

1
i

lnn − lim
n→+∞

1

2

n∑
i=1

1
i

lnn =
1

2
.

12. I =

ˆ 0

−π
4

cos2 x
1 + e−x

dx+

ˆ π
4

0

cos2 x
1 + e−x

dx =

ˆ π
4

0

cos2(−x)
1 + ex

dx+

ˆ π
4

0

cos2 x
1 + e−x

dx =

ˆ π
4

0

cos2 xdx =
π

8
+

1

4
.

3 定积分中值定理, 定积分的应用 (1)

3.1 问题

1. 证明对于 ∀x > 0, 存在唯一的 ξx > 0 使得

ˆ x

0

et
2dt = xeξ

2
x 成立, 并求 lim

x→+∞

ξx
x
.

2. 证明
∣∣∣∣∣
ˆ b

a

sinx2dx
∣∣∣∣∣ ≤ 1

a
, 其中 0 < a < b.

3. 函数 f(x) ∈ D[0, 1], 且 f(1) = 2

ˆ 1
2

0

e1−xf(x)dx. 证明存在 ξ ∈ (0, 1) 使得 f(ξ) = f ′(ξ).

4. 求由下列曲线所围成的平面图形的面积: (1) y2 = x2(1− x2); (2) y2 = x, x2 + y2 = 1(在第一、四象限的部分).
■ 自由选讲.
5. f(x) 在 (0,+∞) 上是凸函数. 证明 f(x) ∈ R[0, x], ∀x ∈ (0,+∞), 且 F (x) =

1

x

ˆ x

0

f(t)dt 也是 (0,+∞) 上的凸函数.

6. f(x) ∈ C(R), 定义 g(x) = f(x)

ˆ x

0

f(t)dt. 证明若 g(x) 单调递减, 则 f(x) ≡ 0.

7. f(x) ∈ R[0, 1], 0 < m ≤ f(x) ≤M , 求证
ˆ 1

0

f(x)dx
ˆ 1

0

1

f(x)
dx ≤ (m+M)2

4mM
. (编者注: 本题比较 tricky.)

8. f(x) 在 R 上有定义且内闭可积, f(x+ y) = f(x) + f(y) + xy(x+ y), 求 f(x).

9. 求积分 I =

ˆ 1

0

ln(1 + x)

1 + x2
dx.
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定积分中值定理, 定积分的应用 (1)

10. 求积分 I =

ˆ π
2

0

1

1 + tan2025 x
dx.

11. 求积分 I =

ˆ 1

0

[
7
√
1− x3 − 3

√
1− x7]dx.

12. f(x) 在 [a, b] 上单调递增, 证明
ˆ b

a

xf(x)dx ≥ a+ b

2

ˆ b

a

f(x)dx. (能试着用定积分第二中值定理吗?)

13. f(x) ∈ C[a, b], 且对任意 g(x) ∈ C∞[a, b] 满足 g(a) = g(b) = 0 都有

ˆ b

a

f(x)g(x)dx = 0. 证明 f(x) ≡ 0.

14. (Dirichlet 判别法). 设 f(x) 在 (a,+∞) 上单调, lim
x→+∞

f(x) = 0. ∀A ≥ a, g(x) ∈ R[a,A] 且

∣∣∣∣∣
ˆ A

a

g(x)dx
∣∣∣∣∣ ≤ M 恒

成立. 证明极限 lim
A→+∞

ˆ A

a

f(x)g(x)dx 存在.

15. 试求由抛物线 y2 = 2x 与过其焦点的弦所围的图形面积的最小值.

3.2 解答

1. 第一问由定积分第一中值定理和函数 et
2

的单调性显然. 其次

lim
x→+∞

ξx
x

= lim
x→+∞

»
ln
´ x

0
et2dt− lnx
x

=

 
lim

x→+∞

ln
´ x

0
et2dt− lnx
x2

L’Hospital
=

Ã
lim

x→+∞

ex2´ x
0

et2dt −
1
x

2x

=

√
lim

x→+∞

xex2 −
´ x

0
et2dt

2x2
´ x

0
et2dt

L’Hospital
=

√
lim

x→+∞

2x2ex2

2x2ex2 + 4x
´ x

0
et2dt

=

√
lim

x→+∞

xex2

xex2 + 2
´ x

0
et2dt

L’Hospital
=

 
lim

x→+∞

(2x2 + 1)ex2

(2x2 + 3)ex2 = 1.

2.
∣∣∣∣∣
ˆ b

a

sinx2dx
∣∣∣∣∣ t=x2

=

∣∣∣∣∣
ˆ b2

a2

sin t
2
√
t
dt
∣∣∣∣∣. 由于 1√

t
非负单调递减,因此由定积分第二中值定理,原积分 =

1

2a

∣∣∣∣∣
ˆ ξ

a2

sin tdt
∣∣∣∣∣ ≤ 1

a
.

3. 由定积分第一中值定理, ∃ξ ∈ [0,
1

2
], s.t. f(1) = 2

ˆ 1
2

0

e1−xf(x)dx = e1−ξf(ξ), 这也意味着对于函数 g(x) = e−xf(x)

成立 g(1) = g(ξ). 由 Rolle 微分中值定理知存在 g′(ζ) = 0 ⇒ f ′(ζ) = f(ζ).

4. (1) S = 4

ˆ 1

0

»
x2(1− x2)dx x=sin θ

= 4

ˆ π
2

0

sin θ cos2 θdθ = −4 cos3 θ
3

∣∣∣∣∣
π
2

0

=
4

3
.

(2)先解出交点,然后用原函数直接计算 S = 2

ˆ −1+
√

5
2

0

√
xdx+2

ˆ 1

−1+
√

5
2

√
1− x2dx =

1

3

(√
5− 1

2

) 3
2

+
π

2
−arcsin

√
5− 1

2
.

5. 凸函数开区间上连续⇒闭区间上可积. 由 F (x) =
1

x

ˆ x

0

f(t)dt =
ˆ x

0

f

(
t

x
· x
)
d t
x
=

ˆ 1

0

f(ux)du⇒ F

(
n∑

i=1

tixi

)
=

ˆ 1

0

f

(
n∑

i=1

ti(uxi)

)
du ≤

ˆ 1

0

n∑
i=1

tif(uxi)du =
n∑

i=1

tiF (xi) 知 F (x) 凸.

6. 构造 G(x) =
1

2

(ˆ x

0

f(t)dt
)2

, G′(x) = g(x) 单调递减, g(0) = 0. 因此 G(x) 在 (0,+∞) 上单调递减, 在 (−∞, 0) 上

单调递增. 又因为 G(0) = 0, G(x) ≥ 0 恒成立⇒ G(x) ≡ 0 ⇒
ˆ x

0

f(t)dt ≡ 0 ⇒ f(x) ≡ 0.

7. 显然有 (M−f(x))
(

1

f(x)
− 1

m

)
≤ 0,因此

ˆ 1

0

(M−f(x))
(

1

f(x)
− 1

m

)
dx ≤ 0 ⇔M

ˆ 1

0

1

f(x)
dx+ 1

m

ˆ 1

0

f(x)dx ≤

1 +
M

m
. 利用均值不等式, LHS ≥ 2

…
M

m

 ˆ 1

0

f(x)dx
ˆ 1

0

1

f(x)
dx⇒

ˆ 1

0

f(x)dx
ˆ 1

0

1

f(x)
dx ≤ (m+M)2

4mM
.

8. 等式左右两边对 x 积分, 得到
ˆ x+y

y

f(t)dt =
ˆ x

0

f(t)dt+ xf(y) +
x3y

3
+
x2y2

2
. 类似有

ˆ x+y

x

f(t)dt =
ˆ y

0

f(t)dt+

yf(x) +
xy3

3
+
x2y2

2
. 两式相减得 xf(y) +

x3y

3
= yf(x) +

xy3

3
, 即是 f(x)

x
− x2

3
=
f(y)

y
− y2

3
. 从而 f(x)

x
− x3

3
≡ C ⇒

f(x) =
x3

3
+ Cx. 经验证符合题意.
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定积分中值定理, 定积分的应用 (1)

9. 作代换 x = tan t 得 I =

ˆ π
4

0

ln(1 + tan t)dt. 再作代换 t =
π

4
− t 得 I =

ˆ π
4

0

ln
(
1 + tan

(π
4
− t
))

dt = π

4
ln 2 −

ˆ π
4

0

ln(1 + tan t)dt = π

4
ln 2− I ⇒ I =

π

8
ln 2.

10. 记 J =

ˆ π
2

0

1

1 + cot2025 xdx. 作换元 t =
π

2
− x 知 I = J . 而 I + J =

ˆ π
2

0

1dx =
π

2
, 因此 I = J =

π

4
.

11.
ˆ 1

0

7
√
1− x3dx y= 7√1−x3

=

ˆ 1

0

ydx 几何意义=

ˆ 1

0

xdy =

ˆ 1

0

3
√
1− y7dy ⇒ I =

ˆ 1

0

3
√
1− y7dy −

ˆ 1

0

3
√
1− x7dx = 0.

12. f(x) 单调, 并考虑 g(x) = x− a+ b

2
. 由定积分第二中值定理,

ˆ b

a

(
x− a+ b

2

)
f(x)dx = f(a)

ˆ ξ

a

(
x− a+ b

2

)
dx+ f(b)

ˆ b

ξ

(
x− a+ b

2

)
dx

= f(a)

ˆ b

a

(
x− a+ b

2

)
dx+ (f(b)− f(a))

ˆ b

ξ

(
x− a+ b

2

)
dx = (f(b)− f(a))

1

2
(b− ξ)(ξ − a) ≥ 0.

13. 用反证法. WLOG 设 f(x0) > 0, 由连续性知 ∃δ > 0 s.t. ∀x ∈ (x0 − δ, x0 + δ) ⊂ [a, b], f(x) >
f(x0)

2
. 从而定义

g(x) =


f(x0)

2
, x ∈ [x0 −

δ

2
, x0 +

δ

2
]

0, x ∈ [a, x0 − δ] ∪ [x0 + δ, b]

C∞连接, otherwise

,

此时

ˆ b

a

f(x)g(x)dx ≥
ˆ x0+

δ
2

x0− δ
2

f2(x0)

4
dx > 0, 矛盾.

14. ∀ε > 0, ∃X > a, s.t.∀x ≥ X, |f(x)| ≤ ε

4M
. 从而 ∀A′, A′′ ≥ X,

∣∣∣∣∣
ˆ A′′

A′
f(x)g(x)dx

∣∣∣∣∣ 定积分第二中值定理=

∣∣∣∣∣f(A′)

ˆ ξ

A′
g(x)dx+

f(A′′)

ˆ A′′

ξ

g(x)dx
∣∣∣∣∣ ≤ 2M(|f(A′)|+ |f(A′′)|) ≤ ε. 然后由柯西收敛定理知极限存在.

15. 设弦方程为 x − 1

2
= ky, 与抛物线交点纵坐标为 y1, y2, 则围成区域的面积 S =

ˆ y2

y1

(
ky +

1

2
− y2

2

)
dy =

k

2
(y2 −

y1)(y2 + y1) +
1

2
(y2 − y1)−

1

6
(y2 − y1)(y

2
2 + y1y2 + y21). 联立直线与抛物线, 由韦达定理知 y1 + y2 = 2k, y1y2 = −1. 则

S =
2

3
(k2 + 1)

3
2 . 因此 k = 0 时面积最小, 为 2

3
.

补充 (不要求掌握)

等周问题: 长为 L 的曲线何时围成区域面积最大? 答案: 圆 (一年级小学生皆可猜出).

证明: 设 D 为凸区域 (D 中任意两点连线都在 D 内). 设 Γ :

 x = x(s)

y = y(s)
∈ C1[0, L],此处选

择 Γ的弧长为参数,则 x′(s)2+y′(s)2 = 1,且 D 的面积为 A =

ˆ L

0

xdy =

ˆ L

0

x(s)y′(s)ds. 设

C :

 x = φ(s) = x(s)

y = ψ(s)
是以 O为中心, R为半径的圆,此处选择 Γ的弧长为参数,则 C 的面

积为 πR2 = −
ˆ L

0

ydx = −
ˆ L

0

ψ(s)x′(s)ds. 从而 A+ πR2 =

ˆ L

0

(x(s)y′(s)−ψ(s)x′(s))ds ≤
ˆ L

0

»
(x(s)y′(s)− ψ(s)x′(s))2ds ≤

ˆ L

0

»
(x′(s)2 + y′(s)2)(x(s)2 + ψ(s)2)ds = RL. 因此成立 2

√
A
√
πR2 ≤ A+πR2 ≤

RL⇒ A ≤ L2

4π
. 其中等号成立当且仅当以上每步相等,尤其是 (x(s)y′(s)−ψ(s)x′(s))2 = (x′(s)2+y′(s)2)(x(s)2+ψ(s)2).

用右边减去左边得到 (x(s)x′(s) + ψ(s)y′(s))2 = 0. 由于 x(s)2 + ψ(s)2 = R2, 两边求导得 x(s)x′(s) + ψ(s)ψ′(s) = 0 ⇒
ψ′(s) = y′(s), ψ(s) = y(s) + y0, 即 Γ 方程为 x2 + (y − y0)

2 = R2, 圆也!

9



定积分的应用 (2)

4 定积分的应用 (2)

4.1 问题

■ 自由选讲.
1. 半径为 R 的球正好有一半沉入水中, 球的密度为 1. 现将球从水中匀速取出, 需要做多少功?
2. 求质量分布均匀的对数螺旋线 r = eθ 在 (r, θ) = (1, 0) 和 (r, θ) = (eϕ, ϕ) 之间一段的重心坐标.
3. 求双扭线 r2 = 2a2 cos 2θ 绕轴 θ =

π

4
旋转一周所得的曲面的面积.

4. 证明极坐标下曲线 r = r(θ)与 θ = α, θ = β 所围平面图形绕极轴旋转一周所得立体体积为 V =
2π

3

ˆ β

α

r3(θ) sin θdθ.

5. 求圆的渐伸线

 x = a(cos t+ t sin t)

y = a(sin t− t cos t)
, t ∈ [0, 2π] 上 A(a, 0), B(a,−2πa) 之间部分与直线 AB 围成图形的面积.

6. 推导重力场中粒子数量密度的分布率 n(z) = n(0)e−
mgz
kBT , 其中 T 是温度, kB 是玻尔兹曼常量.

7. 计算极限 lim
x→+∞

´ x

0
t| sin t|dt
x2

.

8. 已知 b > e2, 证明
ˆ b

e2

dx
lnx <

2b

ln b . BTW, 你能不能找到最优常数 C ≥ 0, 使得
ˆ b

e2

dx
lnx + C ≤ 2b

ln b 恒成立.

9. 证明 π是无理数. 可以按照以下步骤: (1)设 π =
a

b
, a, b ∈ Z,定义 f(x) =

bnxn(π − x)n

n!
,证明 ∀i ∈ N+, f

(i)(0), f (i)(π)

都是整数. (2) 证明定积分
ˆ π

0

f(x) sinxdx 也是整数. (3) 证明 0 <

ˆ π

0

f(x) sinxdx < 1, 得到矛盾.

10. f(x) ∈ C2[0, 1], f(0) = f(1) = f ′(0) = 0, f ′(1) = 1, 证明
ˆ 1

0

[f ′′(x)]2dx ≥ 4, 取等号当且仅当 f(x) = x3 − x2.

11. f(x) ∈ C1[0, 1], f(x) ∈ [0, 1], f(0) = f(1) = 0, f ′(x) 单调递减. 证明曲线 y = f(x) 在 [0, 1] 上的弧长不大于 3.

12. f(x) ∈ C2[a, b], 证明存在 ξ ∈ (a, b) 使得

ˆ b

a

f(x)dx− (b− a)f

(
a+ b

2

)
=
f ′′(ξ)(b− a)3

24
.

13. f(x) ∈ D[0, 1], f ′(x) ∈ R[0, 1], |f ′(x)| ≤ M . 定义 An =

ˆ 1

0

f(x)dx− 1

n

n∑
k=1

f

(
k

n

)
. (1) 证明 |An| ≤

M

2n
. (你可以

推广到高阶和高维吗? 答案是 O(n− k
d ).) (2) 计算极限 lim

n→+∞
nAn.

14. (Jensen 不等式). 凸函数 φ(x) : R → R, p(x) : [a, b] → [0,∞) 可积且

ˆ b

a

p(x)dx > 0. 证明对于任意 f(x) ∈ R[a, b],

φ

(´ b

a
f(x)p(x)dx´ b

a
p(x)dx

)
≤
´ b

a
φ(f(x))p(x)dx´ b

a
p(x)dx

.

4.2 解答

1. 球心向上移动距离 h 时, 球位于水外的体积为 V (h) =
1

2

4

3
πR3 +

ˆ h

0

π
(√

R2 − z2
)2

dz =
2

3
πR3 + π

(
R2h− 1

3
h3
)
.

对应位移 [h, h+ dh] 所做的微功 dW = gV (h)ρdh. 从而 W = g

ˆ R

0

V (h)dh = g

(
2

3
πR4 +

5

12
πR4

)
=

13

12
gπR4.

2. x̄ =

´ ϕ

0
e2θ cos θdθ´ ϕ

0
eθdθ

=
e2ϕ(sinϕ+ 2 cosϕ)− 2

5(eϕ − 1)
, ȳ =

´ ϕ

0
e2θ sin θdθ´ ϕ

0
eθdθ

=
e2ϕ(2 sinϕ− cosϕ) + 1

5(eϕ − 1)
.

3. 原命题等价于 r2 = 2a2 sin 2θ 绕极轴旋转一周所得的曲面的面积. 改写成平面坐标系

 x = a
√
2 sin 2θ cos θ

y = a
√
2 sin 2θ sin θ

, 则

面积 S = 2

ˆ π
2

0

2πy(θ)
»
x′(θ)2 + y′(θ)2dθ = 8πa2.

4. 对应 [θ, θ + dθ] 的扇形面积 dS =
1

2
r2(θ)dθ, 其质心位于 2

3
r(θ) 处. 由 Guldin 第二定理, 此扇形绕极轴旋转体体积

为 dV =
1

2
r2(θ)dθ2π2

3
r(θ) sin θ = 2π

3
r3(θ) sin θdθ. 两边积分得到结果.

5. 直线AB的参数方程是

 x = ϕ(t) = a

y = ψ(t) = t
, t ∈ [−2πa, 0]. 故 S = −

ˆ 2π

0

y(t)dx(t)−
ˆ 0

−2πa

ψ(t)dϕ(t) = −
ˆ 2π

0

a(sin t−

10



定积分的应用 (2)

t cos t)a(t cos t)dt+ 0 =
4

3
π3a2 + πa2.

6. 由二力平衡,压力差 dF 托起了单位体积内的粒子重力 dG. 从而 dF +dG = 0 ⇒ Sdp+ρgSdz = 0 ⇒ dp+nmgdz =
0. 由 p = nkBT 知 dp = kBTdn⇒ dn

n
= − mg

kBT
dz. 两边积分知 logn(z)− logn(0) = −mgz

kBT
⇒ n(z) = n(0)e−

mgz
kBT .

7. 原式 t=xt
= lim

x→+∞

´ 1

0
xt| sin(xt)|d(xt)

x2
= lim

x→+∞

ˆ 1

0

t| sin(xt)|dt R-L Lemma
=

ˆ 1

0

tdt 1
π

ˆ π

0

| sin t|dt = 1

π
.

8. 考虑 f(x) =

√
x

lnx , 从而 f ′(x) =
lnx− 1

(lnx)2 > 0 ⇒ f(x) 单调递增. 因此由定积分第二中值定理, ∃ξ ∈ [e2, b] 使得

ˆ b

e2

dx
lnx =

ˆ b

e2

√
x

lnx
dx√
x
=

√
b

ln b

ˆ b

ξ

dx√
x
=

2
√
b

ln b (
√
b−

√
ξ) <

2b

ln b .

上述做法纯扯淡. 其实我们可以构造 g(b) =
2b

ln b−
ˆ b

e2

dx
lnx , g

′(b) =
2 ln b− 2

(ln b)2 − 1

ln b =
ln b− 2

(ln b)2 > 0 ⇒ g(b) > g(e2) = e2.

9. (1) f(x) 是一个次数从 n 到 2n 的多项式. 至于 f (i)(0) 是不是整数, 我们只需讨论求导后的非零常数项. 此时 i ≥ n,
求导后得到的非零常数值是 i!c, 且 c 是整数除以 n! 得到的有理数, 从而 i!c 是整数. 由于 f(x) = f(π− x) ⇒ f (i)(π) =

(−1)nf (i)(0), 因此 f (i)(π) 也是整数.
(2)由分部积分,

ˆ π

0

f(x) sinxdx = f(x)(− cosx)|π0+
ˆ π

0

f ′(x) cosxdx = f(0)+f(π)+f ′(x) sinx|π0−
ˆ π

0

f ′′(x) sinxdx =

f(0) + f(π)−
ˆ π

0

f ′′(x) sinxdx. f(x) 是 2n 此多项式, 重复以上过程, 最后的结果是
ˆ π

0

f(x) sinxdx = f(0) + f(π)−

f ′′(0)− f ′′(π) + · · ·+ (−1)nf (2n)(0) + (−1)nf (2n)(π), 因此是整数.

(3)在区间 [0, π]上成立 0 ≤ a− bx = b(π−x) ≤ a,因此 0 ≤ f(x) =
xn(a− bx)n

n!
≤ πnan

n!
,从而 0 <

ˆ π

0

f(x) sinxdx ≤ˆ π

0

f(x)dx < πn+1an

n!
. 当 n 足够大时, π

n+1an

n!
< 1.

10. 令 p(x) = x3−x2,从而有
ˆ 1

0

[(f ′′(x))2−(p′′(x))2]dx =

ˆ 1

0

[f ′′(x)−p′′(x)]2dx+2

ˆ 1

0

f ′′(x)p′′(x)dx−2

ˆ 1

0

[p′′(x)]2dx ≥

0 + 2f ′(x)p′′(x)|10 − 2

ˆ 1

0

f ′(x)p′′′(x)dx− 8 = 2f ′(1)p′′(1)− 2f(x)p′′′(x)|10 + 2

ˆ 1

0

f(x)p′′′′(x)dx− 8 = 0.

11. 设 x0 = argmax
x∈[0,1]

f(x) ⇒ f ′(x0) = 0. 从而成立弧长估计

s =

ˆ 1

0

»
1 + f ′(x)2dx ≤

ˆ 1

0

(1 + |f ′(x)|)dx = 1 +

ˆ x0

0

f ′(x)dx−
ˆ 1

x0

f ′(x)dx = 1 + 2f(x0) ≤ 3.

12. 由分部积分和定积分第一中值定理,
ˆ a+b

2

a

f(x)dx =

ˆ a+b
2

a

f(x)d(x− a) = f

(
a+ b

2

)
b− a

2
−
ˆ a+b

2

a

f ′(x)d(x− a)2

2

= f

(
a+ b

2

)
b− a

2
− f ′

(
a+ b

2

)
(b− a)2

8
+

ˆ a+b
2

a

(x− a)2

2
f ′′(x)dx

= f

(
a+ b

2

)
b− a

2
− f ′

(
a+ b

2

)
(b− a)2

8
+ f ′′(ξ1)

ˆ a+b
2

a

(x− a)2

2
dx.

同理, ˆ b

a+b
2

f(x)dx = f

(
a+ b

2

)
b− a

2
+ f ′

(
a+ b

2

)
(b− a)2

8
+ f ′′(ξ2)

ˆ b

a+b
2

(x− b)2

2
dx.

两式相加得

ˆ b

a

f(x)dx = f

(
a+ b

2

)
(b− a) + (f ′′(ξ1) + f ′′(ξ2))

(b− a)3

48

Darboux
= f

(
a+ b

2

)
(b− a) + f ′′(ξ)

(b− a)3

24
.

13. (1) 直接计算即可:∣∣∣∣∣
ˆ 1

0

f(x)dx− 1

n

n∑
k=1

f

(
k

n

)∣∣∣∣∣ =
∣∣∣∣∣

n∑
k=1

ˆ k
n

k−1
n

(
f(x)− f

(
k

n

))
dx
∣∣∣∣∣ ≤

n∑
k=1

ˆ k
n

k−1
n

∣∣∣∣f(x)− f

(
k

n

)∣∣∣∣ dx
≤

n∑
k=1

ˆ k
n

k−1
n

M

(
k

n
− x

)
dx =

n∑
k=1

M

2n2
=
M

2n
.

11
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(2) 注意到

An =

ˆ 1

0

f(x)dx− 1

n

n∑
k=1

f(k−1
n

) + f( k
n
)

2
+

1

2n
(f(0)− f(1))

=
n∑

k=1

(ˆ k
n

k−1
n

f(x)dx−
f(k−1

n
) + f( k

n
)

2n

)
+

1

2n
(f(0)− f(1)).

利用分部积分,

ˆ k
n

k−1
n

f(x)dx =

ˆ k
n

k−1
n

f(x)d
(
x− 2k − 1

2n

)
= f(x)

(
x− 2k − 1

2n

) ∣∣∣∣∣
k
n

k−1
n

−
ˆ k

n

k−1
n

(
x− 2k − 1

2n

)
f ′(x)dx :=

f(k−1
n

) + f( k
n
)

2n
−Bk

n,

其中

Bk
n =

ˆ k
n

k−1
n

(
x− 2k − 1

2n

)
f ′(x)dx =

ˆ 2k−1
2n

k−1
n

(
x− 2k − 1

2n

)
f ′(x)dx+

ˆ k
n

2k−1
2n

(
x− 2k − 1

2n

)
f ′(x)dx

= f ′(ξk,1)

ˆ 2k−1
2n

k−1
n

(
x− 2k − 1

2n

)
dx+ f ′(ξk,2)

ˆ k
n

2k−1
2n

(
x− 2k − 1

2n

)
dx = −f

′(ξk,1)

8n2
+
f ′(ξk,2)

8n2
.

综上所述, 我们有

nAn =
n∑

k=1

f ′(ξk,2)− f ′(ξk,1)

8n
+
f(0)− f(1)

2

⇒ lim
n→+∞

nAn =
1

8

(ˆ 1

0

f ′(x)dx−
ˆ 1

0

f ′(x)dx
)
+
f(0)− f(1)

2
=
f(0)− f(1)

2
.

14. WLOG
ˆ b

a

p(x)dx = 1,并设
ˆ b

a

f(x)p(x)dx = c,任取 k ∈ [φ′
−(c), φ

′
+(c)],构造 “切”直线 l : y = k(x−c)+φ(c). 由

凸函数性质知 φ(x) ≥ l(x)恒成立. 从而 φ(c) = l(c) = k

(ˆ b

a

f(x)p(x)dx− c

)
+φ(c) =

ˆ b

a

[k(f(x)−c)+φ(c)]p(x)dx =

ˆ b

a

l(f(x))p(x)dx ≤
ˆ b

a

φ(f(x))p(x)dx.

5 广义积分

5.1 问题

1. 讨论广义积分
ˆ +∞

1

x

(
1− cos 1

x

)α

dx, α > 0 的收敛性.

2. 讨论广义积分
ˆ +∞

1

sin
(
sinx
x

)
dx 的收敛性与绝对收敛性.

3. 讨论广义积分
ˆ 1

0

sin 1
x

x
3
2 ln

(
1 + 1

x

)dx 的收敛性.

4. 讨论广义积分
ˆ +∞

0

sin
(
x+ 1

x

)
xp

dx 的收敛性.

5. 函数 f(x) 在 [a,+∞) 上单调, 无穷积分
ˆ +∞

a

f(x)dx 收敛. 证明 lim
x→+∞

xf(x) = 0.

6. 函数 f(x) 在 [0,+∞) 上单调, g(x) 6≡ 0 是 R 上以 T > 0 为周期的连续函数. 证明无穷积分
ˆ +∞

0

f(x)dx 收敛的充

要条件是无穷积分

ˆ +∞

0

f(x)|g(x)|dx 收敛.

7. f(x), g(x) 是 [0,+∞) 上单调递减的连续正函数, 并且
ˆ +∞

0

f(x)dx,
ˆ +∞

0

g(x)dx 发散. 记 h(x) = min{f(x), g(x)},

讨论

ˆ +∞

0

h(x)dx 的收敛性.

12
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■ 自由选讲.
8. 讨论广义积分

ˆ +∞

0

cos ax
1 + xp

dx, p ≥ 0, a ∈ R 的收敛性.

9. 讨论广义积分
ˆ +∞

0

xp

1 + xq| sinx|r dx, p, q, r > 0 的收敛性.

10. 讨论广义积分
ˆ +∞

0

xdx
1 + x6 sin2 x

的收敛性.

11. 讨论广义积分
ˆ +∞

0

esin x sin 2x
xp

dx 的收敛性和绝对收敛性.

12. 证明 lim
n→+∞

ˆ 1

0

cosn 1

x
dx = 0.

13. 求积分 I(α) =

ˆ +∞

0

dx
(1 + x2)(1 + xα)

.

14. 求积分 I =

ˆ +∞

0

lnx
(x2 + 1)(x2 + 4)

dx.

15. (Dirichlet 积分). 求积分 I =

ˆ +∞

0

sinx
x

dx. 你可以利用恒等式
sin(n+ 1

2
)x

2 sin x
2

=
1

2
+

n∑
k=1

cos kx.

16. (Euler 积分). 求积分 I =

ˆ π
2

0

ln sinxdx.

17. (Euler-Poisson 积分). 利用数列
ß(

1− t2

n

)n™
的极限, 求积分 I =

ˆ +∞

0

e−t2dt. (你可以使用如下命题: 当 a ≥ 1

时, 0 ≤ e−x −
(
1− x

a

)a
≤ x2

a
e−x 在区间 [0, a] 上恒成立. 这由导数知识容易验证.)

18. f(x) 在 R 上内闭可积, f(+∞) = A, f(−∞) = B. 证明 ∀a ∈ R, 积分
ˆ +∞

−∞
[f(x+ a)− f(x)]dx 收敛, 并求其值.

19.
ˆ +∞

−∞
f(x)dx 收敛, 证明

ˆ +∞

−∞
f

(
x− 1

x

)
dx 收敛.

20. 广义积分
ˆ +∞

0

f(x)dx 收敛, 且 ∀k = 1, 2, · · · , n, uk(x) 均单调有界. 证明
ˆ +∞

0

f(x)
n∏

k=1

uk(x)dx 收敛.

21. a, b > 0, 广义积分
ˆ +∞

0

f

(
ax+

b

x

)
dx 收敛, 证明

ˆ +∞

0

f

(
ax+

b

x

)
dx =

1

a

ˆ +∞

0

f(
√
t2 + 4ab)dt.

22. 利用余元公式 Beta(p, 1− p) :=

ˆ 1

0

xp−1(1− x)−pdx =
π

sin pπ (0 < p < 1) 计算积分 I =

ˆ +∞

0

xα

1 + xβ
dx.

23. 计算极限 lim
t→0+0

1√
t

ˆ +∞

0

e−
1
t (e

x−x−1)dx. 你可能需要用到第 17 题的结论.

5.2 解答

1. 由于当 x→ +∞ 时 x

(
1− cos 1

x

)α

∼ x

(
1

2x2

)α

∼ x1−2α, 因此 α > 1 时收敛, 0 < α ≤ 1 时发散.

2. 由带 Lagrange 余项的 Taylor 展开, sin
(
sinx
x

)
=

sinx
x

− cos(ξ(x))
6

(
sinx
x

)3

, 其中 ξ(x) ∈
[
0,

sinx
x

]
∪
[
sinx
x

, 0

]
.

由于

∣∣∣∣∣cos(ξ(x))6

(
sinx
x

)3
∣∣∣∣∣ ≤ 1

6x3
绝对收敛, 而 sinx

x
条件收敛, 因此原积分条件收敛.

3. 做变元替换 t =
1

x
知原积分为

ˆ +∞

1

sin tdt
t

1
2 ln(1 + t)

. 由于变上限积分
ˆ T

1

sin tdt 有界, 1

t
1
2 ln(1 + t)

单调递减趋于 0, 因

此由 Dirichlet 判别法知收敛.

4. 记 I1 =

ˆ +∞

1

sin
(
x+ 1

x

)
xp

dx, I2 =
ˆ 1

0

sin
(
x+ 1

x

)
xp

dx x= 1
x=

ˆ +∞

1

sin
(
x+ 1

x

)
x2−p

dx. 先讨论 I1,有
ˆ +∞

1

sin
(
x+ 1

x

)
xp

dx t=x+ 1
x=

ˆ +∞

2

2p−1 sin t
(t+

√
t2 − 4)p−1

√
t2 − 4

dt. 当 p > 0 时, 变上限积分
ˆ A

2

sin tdt 有界, 1

(t+
√
t2 − 4)p−1

√
t2 − 4

在 t 充分大后单

调递减趋于 0, 因此原积分收敛. 当 p = 0 时, 后者在 t 充分大后单调且不趋于 0 或 +∞, 由 Abel 判别法知其收敛性与ˆ +∞

2

sin tdt 收敛性相同, 因此发散. 当 p < 0 时显然发散. 对于 I2 可直接将 2− p 代入 p 得到 2− p > 0 时收敛, 否则

发散. 原积分收敛当且仅当 I1, I2 同时收敛, 因此其在 0 < p < 2 时收敛.
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广义积分

5. 不妨设 f(x) ≥ 0 且单调递减. 从而 xf(x) = 2
x

2
f(x) ≤ 2

ˆ x

x
2

f(t)dt, 由 Cauchy 收敛准则知 x 充分大后 xf(x) 充分

小, 即极限为 0.
6. “⇒”: 由无穷积分收敛, f(x) 单调知可不妨设 f(x) ≥ 0 且单调递减, 那么由 |g(x)| 的有界性立得结果.
“⇐”: 由无穷积分收敛, f(x) 单调, g(x) 连续且不恒为 0 知可不妨设 f(x) ≥ 0 且单调递减, 并找到区间 [a, b] ⊂ [0, T ]

使得 ∀x ∈ [a, b], |g(x)| ≥ m. 从而对于 ∀k1 ≤ k2 ∈ Z, 成立
ˆ a+k2T

a+k1T

f(x)dx =

k2−1∑
k=k1

ˆ b+kT

a+kT

f(x)dx+

k2−1∑
k=k1

ˆ a+(k+1)T

b+kT

f(x)dx

=

k2−1∑
k=k1

ˆ b+kT

a+kT

f(x)dx+
T − b+ a

b− a

k2−1∑
k=k1

ˆ b+kT

a+kT

f

(
T − b+ a

b− a
(x− a− kT ) + b+ kT

)
dx

≤
k2−1∑
k=k1

ˆ b+kT

a+kT

f(x)dx+
T − b+ a

b− a

k2−1∑
k=k1

ˆ b+kT

a+kT

f(x)dx

=
T

b− a

k2−1∑
k=k1

ˆ b+kT

a+kT

f(x)dx ≤ T

(b− a)m

k2−1∑
k=k1

ˆ b+kT

a+kT

f(x)|g(x)|dx ≤ T

(b− a)m

ˆ a+k2T

a+k1T

f(x)|g(x)|dx,

其中第一个不等号是因为当 x ∈ [a + kT, b + kT ] 时, f
(
T − b+ a

b− a
(x− a− kT ) + b+ kT

)
≤ f(x), 这由 f(x) 单调递

减保证. 然后利用 Cauchy 收敛原理知广义积分
ˆ +∞

0

f(x)dx 收敛.

7. 可收敛可发散. 可发散是显然的, 一个可收敛的例子是 h(x) =

 1, x ∈ [0, 1]
1

x2
, x ∈ (1,+∞)

, 然后交替构造 f(x) 和 g(x) 让

它们在许多区间为常数函数. 比如说, 他们在 x = n处分开后, 在接下来长度为 n2 的区间里, 令 f(x) ≡ 1

n2
, g(x) = 1

x2
;

然后在长度为 1 的区间里, f(x) 连续地连接两点
(
n2 + n,

1

n2

)
和

(
n2 + n+ 1,

1

(n2 + n+ 1)2

)
, g(x) ≡ 1

x2
; 再在接下

来长度为 (n2 + n+ 1)2 的区间里, 令 f(x) =
1

x2
, g(x) ≡ 1

(n2 + n+ 1)2
.

8. (1) 当 a 6= 0, p > 0 时, 1

1 + xp
单调递减趋于 0,

ˆ N

0

cos axdx 有界, 由 Dirichlet 判别法知收敛.

(2) 当 a 6= 0, p = 0 时显然发散. (3) 当 a = 0, p > 1 时显然收敛. (4) 当 a = 0, 0 ≤ p ≤ 1 时显然发散.
9. 显然当 q ≤ p+ 1 时原积分发散. 当 q > p+ 1 时, 一方面,

I =
+∞∑
k=0

ˆ π

0

(kπ + t)p

1 + (kπ + t)q| sin t|r dt ≤ 2
+∞∑
k=0

(k + 1)pπp

ˆ π

0

dt
1 + (kπ)q| 2

π
t|r

≤ C1

+∞∑
k=0

(k + 1)p

k
q
r

ˆ 2(kπ)
q
r

0

dt
1 + tr

.

另一方面,

I =
+∞∑
k=0

ˆ π

0

(kπ + t)p

1 + (kπ + t)q| sin t|r dt ≥
+∞∑
k=0

(kπ)p
ˆ π

0

dt
1 + [(k + 1)π]q|t|r

≥ C2

+∞∑
k=0

kp

(k + 1)
q
r

ˆ π[(k+1)π]
q
r

0

dt
1 + tr

.

由于: (1) r > 1 时

ˆ A

0

dt
1 + tr

一致有界; (2) r = 1 时

ˆ A

0

dt
1 + tr

∼ lnA; (3) r < 1 时

ˆ A

0

dt
1 + tr

∼ A1−r; 因此原积分

收敛当且仅当 q > (p+ 1)max(r, 1).

10. 函数恒正, 只需讨论有界性. 令 uk =

ˆ kπ

(k−1)π

xdx
1 + x6 sin2 x

, 则

uk ≤ kπ

ˆ kπ

(k−1)π

dx
1 + (k − 1)6π6 sin2 x

= kπ

ˆ π

0

dx
1 + (k − 1)6π6 sin2 x

= 2kπ

ˆ π
2

0

dx
1 + (k − 1)6π6 sin2 x

≤ 2kπ

ˆ π
2

0

dx
1 + 4(k − 1)6π4x2

=
k

π(k − 1)3

ˆ (k−1)3π3

0

dt
1 + t2

∼ 1

2k2
.

由于

ˆ nπ

0

xdx
1 + x6 sin2 x

=
n∑

k=1

uk ∼ 1

2

n∑
k=1

1

k2
< +∞, 因此原广义积分收敛.
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广义积分

11. 先考虑收敛性. 显然 p ≤ 0时发散. p > 0时,由于
∣∣∣∣∣
ˆ A

a

esin x sin 2xdx
∣∣∣∣∣ = 2

∣∣∣∣∣
ˆ sin A

sin a

esin x sinxd sinx
∣∣∣∣∣ = 2|esin A(sinA−

1)−esin a(sin a−1)| < 8e,且 1

xp
单调递减趋于 0,因此由 Dirichlet判别法,

ˆ +∞

1

ex sin 2x
xp

dx收敛,我们只需考察积分在

0处的性质. 由于当 x→ 0时
esin x sin 2x

xp
∼ 2

xp−1
,因此 p ≥ 2时发散, 0 < p < 2时收敛. 再考虑绝对收敛性. 1 < p < 2

时,
∣∣∣∣esin x sin 2x

xp

∣∣∣∣ ≤ e

xp
, 因此绝对收敛. 0 < p ≤ 1 时,

∣∣∣∣esin x sin 2x
xp

∣∣∣∣ ≥ 2p

e

∣∣∣∣sin 2x(2x)p

∣∣∣∣ ≥ 1

e

∣∣∣∣sin2 2x

(2x)p

∣∣∣∣ = 1

2e

(
1− cos 4x

(2x)p

)
, 而

ˆ +∞

0

cos 4x
(2x)p

dx 收敛,
ˆ +∞

0

1

(2x)p
dx 发散, 因此原积分条件收敛.

12. 做变换 t =
1

x
, 则

ˆ 1

0

cosn 1

x
dx =

ˆ +∞

1

cosn t
t2

dt =
ˆ A

1

cosn t
t2

dt+
ˆ +∞

A

cosn t
t2

dt := I1 + I2.

对于 I1, 由定积分第二中值定理知 ∃ξA ∈ [1, A] s.t. I1 =
ˆ ξA

1

cosn tdt. 因此对于任意固定的 A, 当 n→ +∞ 时 I1 → 0.

对于 I2, 成立 |I2| ≤
ˆ +∞

A

1

t2
dt = 1

A
. 因此 ∀ε > 0, 选择 A =

2

ε
, 则 |I2| ≤

ε

2
, 并选择充分大的 n 使得 |I1| <

ε

2
. 此时

|I| ≤ ε, 由极限定义知结论成立.

13. 做倒数变换,知 I(α) =

ˆ 0

+∞

d 1
x

(1 + x−2)(1 + x−α)
= I(−α). 又有 I(α)+I(−α) =

ˆ +∞

0

dx
1 + x2

=
π

2
,因此 I(α) ≡ π

4
.

14. I =
1

3

ˆ +∞

0

lnx
x2 + 1

dx − 1

3

ˆ +∞

0

lnx
x2 + 4

dx x=2x
=

1

3

ˆ +∞

0

lnx
x2 + 1

dx − 1

3

ˆ +∞

0

ln(2x)
(2x)2 + 4

d(2x) = 1

6

ˆ +∞

0

lnx
x2 + 1

dx −

ln 2
6

ˆ +∞

0

1

x2 + 1
dx x=et

=
1

6

ˆ +∞

−∞

tet

e2t + 1
dt− π ln 2

12
= −π ln 2

12
.

15. 对恒等式两边积分知
ˆ π

0

sin(n+ 1
2
)x

2 sin x
2

dx =
π

2
. 记 f(x) =

1

x
− 1

2 sin x
2

. 由于 x→ 0时 f(x) = O(x),故 f(x) ∈ R[0, π].

由 R-L 引理知 lim
n→+∞

ˆ π

0

f(x) sin
(
n+

1

2

)
xdx = 0, 即是 lim

n→+∞

ˆ π

0

sin
(
n+ 1

2

)
x

x
dx = lim

n→+∞

ˆ π

0

sin
(
n+ 1

2

)
x

2 sin x
2

=
π

2
.

再利用恒等式

ˆ π

0

sin(n+ 1
2
)x

x
dx =

ˆ (n+ 1
2)π

0

sinx
x

dx n→+∞→
ˆ +∞

0

sinx
x

dx 立得结论.

16. 由对称性知 I =
1

2

ˆ π

0

ln sinxdx. 做变换 x = 2x 知

I =

ˆ π
2

0

ln sin 2xdx =
π

2
ln 2 +

ˆ π
2

0

ln sinxdx+

ˆ π
2

0

ln cosxdx =
π

2
ln 2 + 2I ⇒ I = −π

2
ln 2.

17. 记 In =

ˆ √
n

0

(
1− t2

n

)n

dt. 做变元替换 t =
√
n sinx 知 In =

√
n

ˆ π
2

0

cos2n+1 xdx =
√
n

(2n)!!

(2n+ 1)!!

n→+∞→
√
π

2
. 由

于

ˆ +∞

0

e−t2dt = lim
n→+∞

ˆ √
n

0

e−t2dt, 因此只需求出极限 lim
n→+∞

ˆ √
n

0

[
e−t2 −

(
1− t2

n

)n]
dt. 在提示中令 x = t2, a = n,

得到估计式 0 ≤
ˆ √

n

0

[
e−t2 −

(
1− t2

n

)n]
dt ≤

´ √
n

0
t4e−t2dt
n

. 当 n→ +∞ 时右边分子上的广义积分收敛, 因此右边极

限为 0, 由夹逼原理知欲求极限存在且为 0. 从而
ˆ +∞

0

e−t2dt =
√
π

2
.

18. 直接用定义.
ˆ N

M

[f(x+ a)− f(x)]dx =

ˆ N+a

N

f(x)dx−
ˆ M+a

M

f(x)dx N→+∞,M→−∞→ (A−B)a.

19. 做变量替换 t = x− 1

x
, 知
ˆ +∞

0

f

(
x− 1

x

)
dx =

ˆ +∞

−∞

x2

x2 + 1
f

(
x− 1

x

)
d
(
x− 1

x

)
=

1

2

ˆ +∞

−∞

t+
√
t2 + 4√

t2 + 4
f(t)dt.

由于

ˆ +∞

−∞
f(t)dt 收敛, t+

√
t2 + 4√

t2 + 4
单调有界, 因此由 Abel 判别法知

ˆ +∞

0

f

(
x− 1

x

)
dx 收敛. 另一侧同理.

20. 由 Abel 判别法,
ˆ +∞

0

f(x)u1(x)dx 收敛, 而 u2(x) 单调有界, 因此
ˆ +∞

0

f(x)u1(x)u2(x)dx 收敛, 依此类推.
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21. 令 t = ax− b

x
, 则 x =

t+
√
t2 + 4ab

2a
, ax+

b

x
=

√
t2 + 4ab, dx =

t+
√
t2 + 4ab

2a
√
t2 + 4ab

dt, 从而

ˆ +∞

0

f

(
ax+

b

x

)
dx =

1

2a

ˆ +∞

−∞
f(
√
t2 + 4ab)

t+
√
t2 + 4ab√

t2 + 4ab
dt

=
1

2a

ˆ 0

−∞
f(
√
t2 + 4ab)

t+
√
t2 + 4ab√

t2 + 4ab
dt+ 1

2a

ˆ +∞

0

f(
√
t2 + 4ab)

t+
√
t2 + 4ab√

t2 + 4ab
dt

=
1

2a

ˆ +∞

0

f(
√
t2 + 4ab)

√
t2 + 4ab− t√
t2 + 4ab

dt+ 1

2a

ˆ +∞

0

f(
√
t2 + 4ab)

√
t2 + 4ab+ t√
t2 + 4ab

dt

=
1

a

ˆ +∞

0

f(
√
t2 + 4ab)dt.

22. I =

ˆ +∞

0

xα

1 + xβ
dx

t= 1

1+xβ

=
1

β

ˆ 1

0

t−
α+1
β (1− t)

α+1
β −1dt = 1

β
Beta

(
1− α+ 1

β
,
α+ 1

β

)
=

1

β

π

sin α+1
β
π
.

23. 利用带 Lagrange 余项的 Taylor 展开和变元替换 x = x
√
t, 我们有

1√
t

ˆ +∞

0

e−
1
t (e

x−x−1)dx =
1√
t

ˆ +∞

0

e−
1
t

eξ(x)x2

2 dx (0 ≤ ξ(x) ≤ x)

=

ˆ +∞

0

e−
eξ(x

√
t)x2

2 dx

=

ˆ M

0

e−
eξ(x

√
t)x2

2 dx+

ˆ +∞

M

e−
eξ(x

√
t)x2

2 dx := I1(t) + I2(t).

对于 I1,由于 lim
t→0+0

e−
eξ(x

√
t)x2

2 = e−
x2

2 且有一致性 lim
t→0+0

sup
x∈[0,M ]

∣∣∣∣e− eξ(x
√

t)x2

2 − e−
x2

2

∣∣∣∣ = 0,因此 lim
t→0+0

I1(t) =

ˆ M

0

e−
x2

2 dx.

对于 I2, 我们有 |I2(t)| ≤
ˆ +∞

M

e−
x2

2 dx 恒成立. 因此我们取充分大的 M , 此时有

∣∣∣∣I1(t) + I2(t)−
ˆ +∞

0

e−
x2

2 dx
∣∣∣∣ ≤

∣∣∣∣∣I1(t)−
ˆ M

0

e−
x2

2 dx
∣∣∣∣∣+ |I2(t)|+

∣∣∣∣∣
ˆ M

0

e−
x2

2 dx−
ˆ +∞

0

e−
x2

2 dx
∣∣∣∣∣ < ε

3
+
ε

3
+
ε

3
= ε

对充分小的 t 成立. 因此原极限值为
√
π

2
.

(编者注: 你也可以直接使用 Lebesgue 控制收敛定理.)

6 数项级数

6.1 问题

1. 讨论级数
+∞∑
n=4

1

(lnn)ln(ln n)
的收敛性.

2. 讨论级数
+∞∑
n=1

1− n sin 1
n

nα
, α > 0 的收敛性.

3. 讨论级数
+∞∑
n=1

(−1)n
(
1− cos 1

n

)α

, α > 0 的收敛性和绝对收敛性.

4. 设非常数函数 f(x) 在 [0, 1] 上连续非负, 且 f(x) ≤ 1, 并记 an =

[ˆ 1

0

f(x)dx
] 1

n

. 证明级数
+∞∑
n=1

(1− an) 发散.

■ 自由选讲.

5. 讨论级数
+∞∑
n=1

(−1)n sinn
n

的收敛性.

6. 讨论级数
+∞∑
n=2

sinn
lnn 的收敛性和绝对收敛性.

7. 讨论级数
+∞∑
n=1

nn+ 1
n

(n+ 1
n
)n
的收敛性.
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8. 讨论级数
+∞∑
n=1

sinn√
n+ sinn 的收敛性.

9. 讨论级数
√
2 +

»
2−

√
2 +

√
2−
»
2 +

√
2 +

…
2−

√
2 +

»
2 +

√
2 + · · · 的收敛性.

10. 讨论级数
+∞∑
n=1

(−1)⌊
√
n⌋

n
的收敛性.

11. 0 < a1 <
π

2
, an = sin an−1, 讨论级数

+∞∑
n=1

apn 的收敛性.

12. p, q > 0, 讨论级数 1− 1

2q
+

1

3p
− 1

4q
+ · · ·+ 1

(2n− 1)p
− 1

(2n)q
+ · · · 的收敛性与绝对收敛性.

13. an > 0, 级数
+∞∑
n=1

1

an
收敛, 证明

+∞∑
n=1

n

a1 + a2 + · · ·+ an
收敛.

14. 是否存在部分和序列有界且通项趋于 0 的发散级数?

15. 如果对任意以 0 为极限的数列 {xn} 都有
+∞∑
n=1

anxn 收敛, 证明
+∞∑
n=1

an 也收敛. 绝对收敛性呢?

16. 计算级数
+∞∑
k=2

arctan 2

4k2 − 4k + 1
.

17. 计算级数
+∞∑
n=1

sin(
√
5n)

n
.

18. (Bertrand 判别法). 对于正项级数, 证明:


lim

n→+∞
lnn

[
n

(
an
an+1

− 1

)
− 1

]
> 1 ⇒

+∞∑
n=1

an收敛

lim
n→+∞

lnn
[
n

(
an
an+1

− 1

)
− 1

]
< 1 ⇒

+∞∑
n=1

an发散

.

19.
+∞∑
n=1

an 收敛, 数列 pn > 0 且单调递增趋于 +∞. 证明 lim
n→+∞

∑n
k=1 pkak
pn

= 0.

20. 级数
+∞∑
n=1

nan 收敛, 证明: (1) ∀k ∈ N+,
+∞∑
n=1

nan+k 收敛; (2) lim
k→+∞

+∞∑
n=1

nan+k = 0.

21.
+∞∑
n=1

an = A 且绝对收敛,
+∞∑
n=1

bn = B 且条件收敛, 证明它们的 Cauchy 乘积收敛且
+∞∑
n=1

cn = AB.

22. 对于两个发散级数, 它们的 Cauchy 乘积是否一定发散?
23. (1) 对于收敛级数和发散级数, 它们的 Cauchy 乘积是否一定发散?
(2) 对于正项收敛级数和正项发散级数, 它们的 Cauchy 乘积是否一定发散?

24. f(x) ∈ D[1,+∞), 且
ˆ +∞

1

|f ′(x)|dx 收敛, 证明广义积分
ˆ +∞

1

f(x)dx 与无穷级数
+∞∑
n=1

f(n) 同敛散.

25. 0 < p < 1, a1 > 0, an+1 =
an

1 + apn
, 证明

+∞∑
n=1

an 收敛.

26. 设 x ∈ (0, 1), 证明
+∞∏
n=1

(1 + xn) =
+∞∏
n=1

(1− x2n−1)−1.

27. (Euler 公式). 证明 sinx = x

+∞∏
n=1

(
1− x2

n2π2

)
. 你可以将 sin[(2n+ 1)ϕ] 写成关于 sinϕ 的多项式, 并利用零点求解.

28. 计算无穷乘积 2

(
2

1

) 1
2
(
2

3
· 4
3

) 1
4
(
4

5
· 6
5
· 6
7
· 8
7

) 1
8

· · · . 你可以先写出通项公式, 然后逐步化简.

29. 给定
+∞∑
n=1

an = +∞, an > 0, 问是否总存在
+∞∑
n=1

bn = +∞, bn > 0 且满足 lim
n→+∞

bn
an

= 0?

6.2 解答

1. 当 ek ≤ n ≤ ek+1 时, 1

(lnn)ln(ln n)
≥ 1

(k + 1)ln(k+1)
, 从而

∑
n∈[ek,ek+1]

1

(lnn)ln(lnn) ≥ ek+1 − ek − 2

(k + 1)ln(k+1)
→ +∞, 因此发散.

17
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2. 由于
1− n sin 1

n

nα
∼ 1

6n2+α
, 因此收敛.

3. 由于
(
1− cos 1

n

)α

单调递减趋于 0, 由 Leibniz 判别法知收敛. 由于
(
1− cos 1

n

)α

∼ 1

2αn2α
, 因此 α >

1

2
时绝对收

敛, 0 < α ≤ 1

2
时条件收敛.

4. 显然存在 0 < r < 1 使得

ˆ 1

0

f(x)dx < r. 因此 1− an ≥ 1− r
1
n = 1− e

ln r
n ∼ − ln r

n
, 由调和级数发散知原级数发散.

5.
+∞∑
n=1

(−1)n sinn
n

=
+∞∑
n=1

sin(n+ nπ)

n
. 部分和序列

n∑
k=1

sin(k+ kπ) 有界, 1

n
单调递减趋于 0, 由 Dirichlet 判别法知级数

收敛.

6. 1

lnn 单调递减趋于 0,
k∑

n=2

sinn 对于 ∀k ≥ 1 有一致上界, 由 Dirichlet 判别法知级数收敛. 又因为
∣∣∣∣sinnlnn

∣∣∣∣ ≥ sin2 n

lnn =

1− cos 2n
2 lnn =

1

2 lnn − cos 2n
lnn , 而

+∞∑
n=2

cos 2n
lnn 收敛,

+∞∑
n=2

1

2 lnn 发散, 因此级数不绝对收敛.

7. lim
n→+∞

nn+ 1
n

(n+ 1
n
)n

= lim
n→+∞

n
1
n

(1 + 1
n2 )n

= 1, 因此原级数发散.

8. 首先由 Dirichlet 判别法易知级数
+∞∑
n=1

sinn√
n
收敛. 注意到 sinn√

n+ sinn − sinn√
n

=
sin2 n√

n(
√
n+ sinn) , 且成立估计

1− cos 2n
2
√
n(
√
n+ 1)

=
sin2 n√
n(
√
n+ 1)

≤ sin2 n√
n(
√
n+ sinn) ≤ sin2 n√

n(
√
n− 1)

=
1− cos 2n

2
√
n(
√
n− 1)

.

但级数
+∞∑
n=1

1

2
√
n(
√
n± 1)

均发散, 级数
+∞∑
n=1

cos 2n
2
√
n(
√
n± 1)

均收敛 (Abel 判别法), 因此级数
+∞∑
n=1

sin2 n√
n(
√
n+ sinn) 发散,

从而原级数可写成一个收敛级数和一个发散级数的和, 故发散.

9. 注意到
√
2 = 2 sin π

4
,
»
2−

√
2 =

…
2− 2 cos π

4
= 2 sin π

8
,
√
2−
»
2 +

√
2 =

 
2−
…
2 + 2 cos π

4
=

…
2− 2 cos π

8
=

2 sin π

16
, 依此类推, 再利用 sinx ∼ x 知原级数收敛.

10. 合并同号项, 则级数改写为
+∞∑
k=1

(−1)kbk, 其中 bk =
1

k2
+

1

k2 + 1
+ · · ·+ 1

(k + 1)2 − 1
≤ 2k + 1

k2
→ 0. 另一方面, bk ≥

ˆ 1

0

1

k2 + x
dx+

ˆ 2

1

1

k2 + x
dx+ · · ·+

ˆ 2k+1

2k

1

k2 + x
dx =

ˆ 2k+1

0

1

k2 + x
dx = ln (k + 1)2

k2
,而 bk+1 ≤

ˆ 0

−1

1

(k + 1)2 + x
dx+

· · · +
ˆ 2k+2

2k+1

1

(k + 1)2 + x2
dx =

ˆ 2k+2

−1

1

(k + 1)2 + x2
dx = ln (k + 1)2 + 2(k + 1)

k(k + 2)
⇒ bk − bk+1 ≥ ln k(k + 1)

(k + 2)(k + 3)
≥ 0.

由 Leibniz 判别法知收敛.

11. 上学期例题已证 lim
n→+∞

na2n = 3, 因此 an ∼
…

3

n
, apn ∼

(
3

n

) p
2

, 从而当 p ≤ 2 时级数发散, p > 2 时级数收敛.

12. (a) 当 p > 1, q > 1 时, |an| ≤
1

nmin(p,q) , 因此绝对收敛.
(b) 当 0 < p = q ≤ 1 时, 由 Leibniz 判别法知条件收敛.
(c) 当 p > 1, 0 < q ≤ 1 或 0 < p ≤ 1, q > 1 时, 级数正部 (或负部) 收敛, 负部 (或正部) 发散, 因此发散.

(d) 当 0 < p < q ≤ 1 时, 由 lim
n→+∞

1
(2n−1)p

− 1
(2n)q

1
(2n−1)p

= 1 知级数发散.

(e) 当 0 < q < p ≤ 1 时, 由 lim
n→+∞

− 1
(2n)q

+ 1
(2n+1)p

− 1
(2n)q

= 1 知级数发散.

13.
+∞∑
n=1

1

an
收敛 ⇒ 1

an
→ 0 ⇒ an → +∞. 因此可按从小到大顺序将 {an}+∞

n=1 重排为 aϕ(1) ≤ aϕ(2) ≤ · · · ≤ aϕ(n) ≤ · · · .

令 bn =
n

aϕ(1) + aϕ(2) + · · ·+ aϕ(n)
, 则 {bn} 单调递减, 且 b2n =

2n

aϕ(1) + · · ·+ aϕ(2n)
≤ 2n

aϕ(n) + · · ·+ aϕ(2n)
≤ 2n

naϕ(n)
=

2

aϕ(n)
, 故

+∞∑
n=1

bn < +∞. 又因为 n

a1 + · · ·+ an
≤ bn, 因此

+∞∑
n=1

n

a1 + · · ·+ an
收敛.
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14. 存在. 一个例子为 1,−1

2
,−1

2
,
1

3
,
1

3
,
1

3
,−1

4
,−1

4
,−1

4
,−1

4
, · · · .

15. 不妨设 an > 0, 否则可将对应 xn 反号, 题目条件与绝对收敛性结论不变. 如果
+∞∑
n=1

an 发散, 则可归纳构造数列 An,

满足 A0 = 0, An = inf
k∈N+

k∑
i=An−1+1

ai ≥ n. 从而定义数列 {xn} 为 A1 −A0 个 1, A2 −A1 个
1

2
, · · · , An −An−1 个

1

n
, · · ·

的依次排列, 满足 lim
n→+∞

xn = 0, 而
+∞∑
n=1

anxn > 1 + 1 + · · · = +∞. 因此
+∞∑
n=1

an 绝对收敛.

16. 注意到 arctan 2

4k2 − 4k + 1
= arctan 1

2k − 1
− arctan 1

2k
, 从而

+∞∑
k=2

arctan 2

4k2 − 4k + 1
= arctan 1

2
.

17. Sn =
n∑

k=1

sin
√
5k

k
= −
ˆ π

√
5

n∑
k=1

cos ktdt = −
ˆ π

√
5

sin(n+ 1
2
)t− sin t

2

2 sin t
2

dt = −
ˆ π

√
5

1

2 sin t
2

sin(n+ 1

2
)tdt+ 1

2
(π−

√
5)

R-L→

1

2
(π −

√
5).

18. 先证明第一种情况. 由条件知 ∃N1 > 0, s.t.∀n > N1, lnn
[
n

(
an
an+1

− 1

)
− 1

]
> r1 > 1 ⇔ an+1

an
<

n lnn
(n+ 1) lnn+ r1

.

可以验证当 1 < p < r1 时, n lnn
(n+ 1) lnn+ r1

<
n lnp n

(n+ 1) lnp(n+ 1)
⇔ (n+ 1)[lnp(n+ 1)− lnp n]

lnp−1 n
< r1. 利用 f(x) = xp

的微分中值定理, 知 LHS =
(n+ 1)p lnp−1(n+ θ)[ln(n+ 1)− lnn]

lnp−1 n
< p (n+ 1)[ln(n+ 1)− lnn]︸ ︷︷ ︸

→1

lnp−1(n+ 1)

lnp−1 n︸ ︷︷ ︸
→1

< r1 =

RHS 当 n 足够大时成立. 因此有 ∃N2 > N1, s.t.∀n > N2,
an+1

an
<

n lnp n

(n+ 1) lnp(n+ 1)
⇒ an <

C

n lnp n
. 由于

+∞∑
n=1

C

n lnp n

收敛, 因此
+∞∑
n=1

an 收敛.

19. 记 Sn =
n∑

k=1

ak, 并设 lim
n→+∞

Sn = S, 则

n∑
k=1

pkak = p1S1 +
n∑

k=2

pk(Sk − Sk−1) =
n−1∑
k=1

Sk(pk − pk+1) + Snpn

⇒

n∑
k=1

pkSk

pn
= Sn −

n−1∑
k=1

Sk
pk+1 − pk

pn
= (Sn − S)−

n−1∑
k=1

(Sk − S)
pk+1 − pk

pn
+ S

p1
pn
.

当 n充分大时, |Sn−S| <
ε

6
,

∣∣∣∣S p1pn
∣∣∣∣ < ε

6
. 对于第二项, 设 |Sn| ≤M , 由极限定义, ∃N1 > 1, s.t. ∀n ≥ N1, |Sn−S| <

ε

2
.

从而有估计 ∣∣∣∣∣
n−1∑
k=1

(Sk − S)
pk+1 − pk

pn

∣∣∣∣∣ ≤ 2M

N1∑
k=1

pk+1 − pk
pn

+
ε

2

n−1∑
k=N1+1

pk+1 − pk
pn

≤ 2M
pN1+1 − p1

pn
+
ε

2
.

由极限定义, ∃N2 > N1, s.t. ∀n ≥ N2,
pN1+1 − p1

pn
<

ε

12M
. 此时

∣∣∣∣∣
n−1∑
k=1

(Sk − S)
pk+1 − pk

pn

∣∣∣∣∣ < 2ε

3
,从而有

∣∣∣∣∣∣∣∣
n∑

k=1

pkSk

pn

∣∣∣∣∣∣∣∣ < ε.

这表明其极限值为 0.

20. (1)
+∞∑
n=1

(n+ k)an+k 收敛, n

n+ k
随 n 单调有界, 由 Abel 判别法知收敛. (2) 记 Rn =

+∞∑
k=n

kak. 则

∣∣∣∣∣
m∑

n=1

nan+k

∣∣∣∣∣ =
∣∣∣∣∣

m∑
n=1

n

n+ k
(n+ k)an+k

∣∣∣∣∣ =
∣∣∣∣∣

m∑
n=1

n

n+ k
(Rn+k−1 −Rn+k)

∣∣∣∣∣
=

∣∣∣∣∣ 1

k + 1
Rk −

m

k +m
Rk+m +

m−1∑
n=1

Rn+k

(
n+ 1

n+ k + 1
− n

n+ k

)∣∣∣∣∣
19
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≤ 1

k + 1
|Rk|+

m

k +m
|Rk+m|+ sup

k+1≤j≤n+m−1
|Rj |

m−1∑
n=1

(
n+ 1

n+ k + 1
− n

n+ k

)
≤ 1

k + 1
|Rk|+

m

k +m
|Rk+m|+ sup

j≥k+1
|Rj |

(
m

k +m
− 1

k + 1

)

令 m→ +∞, 得到
∣∣∣∣∣
+∞∑
n=1

nan+k

∣∣∣∣∣ ≤ 1

k + 1
|Rk|+ sup

j≥k+1
|Rj | ≤ 2 sup

j≥k
|Rj |

k→+∞→ 0.

21. 记 An =
n∑

k=1

ak, Bn =
n∑

k=1

bk,则
n∑

k=1

cn = a1Bn+a2Bn−1+· · ·+anB1 = AnB+(a1βn+a2βn−1+· · ·+anβ1)(定义 βk =

Bk−B):= ∆1(n)+∆2(n). 显然∆1(n) → AB,下证∆2(n) → 0. 设 |βn| ≤ β, ∀n ≥ 1. 由定义, ∀ε > 0, ∃N ≥ 3, s.t. ∀n >

N, ∀p ≥ 1, |βn| <
ε

2

(
+∞∑
n=1

|an|
) , n+p∑

k=n+1

|ak| <
ε

2β
. 从而当 n ≥ 2N 时, |∆2(n)| ≤

∣∣∣∣∣
N∑

k=1

akβn+1−k

∣∣∣∣∣+
∣∣∣∣∣

n∑
k=N+1

akβa+1−k

∣∣∣∣∣ ≤ ε.

22. 不一定, 反例是 a0 = 1, an = −
(
3

2

)n

和 b0 = 1, bn =

(
3

2

)n−1(
2n +

1

2n+1

)
.

+∞∑
n=0

an,
+∞∑
n=0

bn 均发散, 但 Cauchy 乘

积 cn =

(
3

2

)n−1(
2n +

1

2n+1

)
−
(
3

2

)n−1(
2n−1 +

1

2n

)
− · · · −

(
3

2

)n−1(
21 +

1

22

)
−
(
3

2

)n

=

(
3

4

)n

⇒
+∞∑
n=1

cn 收敛.

23. (1) 不一定, 反例是 an ≡ 0 和 bn ≡ 1. 当然也不一定收敛, 如 an =
1

n2
, bn = n.

(2) 一定. 设
+∞∑
n=1

an 收敛,
+∞∑
n=1

bn 发散, 则 cn =
n∑

k=1

akbn−k ≥ a1bn−1, 由比较判别法知
+∞∑
n=1

cn 发散.

24. 注意到 ∣∣∣∣∣
n−1∑
k=m

f(k)−
ˆ n

m

f(x)dx
∣∣∣∣∣ ≤

n−1∑
k=m

ˆ k+1

k

|f(k)− f(x)|dx ≤
n−1∑
k=m

ˆ k+1

k

ˆ x

k

|f ′(t)|dtdx

≤
n−1∑
k=m

ˆ k+1

k

ˆ k+1

k

|f ′(t)|dxdt ≤
n−1∑
k=m

ˆ k+1

k

|f ′(t)|dt =
ˆ n

m

|f ′(t)|dt,

因此由 Cauchy 收敛准则知广义积分
ˆ +∞

1

f(x)dx 与无穷级数
+∞∑
n=1

f(n) 同敛散.

25. 易知 an 单调递减, 且 an+1 − an = −an+1a
p
n ⇒ an+1 =

an − an+1

apn
<
an − an+1

ξpn

微分中值定理
=

1

1− p
(a1−p

n − a1−p
n+1). 然

后两边累加得到收敛性.

26.
+∞∏
n=1

(1 + xn) =
+∞∏
n=1

+∞∏
i=0

(1 + x2
i(2n−1)) =

+∞∏
n=1

(1− x2n−1)−1.

27. 注意到 sin[(2n + 1)ϕ] 可展开为 sinϕ 的 2n + 1 次多项式, 且只含奇次幂项, 因此 sin[(2n + 1)ϕ] = sinϕP (sin2 ϕ),
其中 P (·) 是 n 次多项式. 由极限关系知 P (0) = 2n+ 1, 且 LHS 全部零点为 xk =

kπ

2n+ 1
, k = 1, · · · , n, 因此

P (t) = (2n+ 1)
n∏

k=1

(
1− t

sin2( kπ
2n+1

)

)

⇒ sin[(2n+ 1)ϕ] = (2n+ 1) sinϕ
n∏

k=1

(
1− sin2 ϕ

sin2( kπ
2n+1

)

)

⇒ sinx = (2n+ 1) sin x

2n+ 1

n∏
k=1

(
1−

sin2 x
2n+1

sin2( kπ
2n+1

)

)
.

现在, 问题变为求 RHS 在 n→ +∞ 时的极限. 记

Um = (2n+ 1) sin x

2n+ 1

m∏
k=1

(
1−

sin2 x
2n+1

sin2( kπ
2n+1

)

)
, Vm =

n∏
k=m+1

(
1−

sin2 x
2n+1

sin2( kπ
2n+1

)

)
.

从而

lim
n→+∞

Um = x
m∏

k=1

(
1− x2

k2π2

)
,
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1 > Vm ≥
n∏

k=m+1

(
1−

( x
2n+1

)2

4
π2

k2π2

(2n+1)2

)
=

n∏
k=m+1

(
1− x2

4k2

)
>

+∞∏
k=m+1

(
1− x2

4k2

)
m→+∞→ 1.

因此由夹逼原理, sinx = lim
n→+∞

(2n+ 1) sin x

2n+ 1

n∏
k=1

(
1−

sin2 x
2n+1

sin2( kπ
2n+1

)

)
= x

+∞∏
k=1

(
1− x2

k2π2

)
.

28. 主要难点在于如何写成通式.

Pn = 2
√
2

n∏
k=2

®
1

2

[
(2k−1 − 1)!!(2k)!!

(2k−1)

]2´ 1

2k (2n−1)!!=
(2n)!

22
n−1

(2n−1)!

= 2
√
2

n∏
k=2

 1√
2

(2k−1)!

22k−2 (2k−2)!
· 22k−1

(2k−1)!

22k−2(2k−2)! · (2k)!

22k−1 (2k−1)!


1

2k−1

= 2
√
2

n∏
k=2

[
22

k−1− 1
2

((2k−1)!)3

((2k−2)!)2(2k)!

] 1

2k−1

= 2
√
2

n∏
k=2

21− 1

2k

(
(2k−1)!
(2k)!

) 1

2k−1

(
(2k−2)!
(2k−1)!

) 1

2k−2

 = 2
√
2 · 2

n−1−
n∑

k=2

1

2k 1
1
2

[
(2n−1)!

(2n)!

] 1

2n−1

= 2 · 2n+ 1
2n

[
(2n−1)!

(2n)!

] 1

2n−1

= 2

®
2n2

n+1

[
(2n−1)!

(2n)!

]2´ 1
2n

Stirling∼ 2

2n2n+1
2π2n−1

(
2n−1

e

)2n
2π2n

(
2n

e

)2n+1


1
2n

→ e.

29. 先递归构造 kn: 设 k0 = 0, kn = inf
m∈N+

m > kn−1 :
m∑

i=kn−1+1

ai > n

, 随后定义当 kn−1 < m ≤ kn 时, bm =
am
n

.

7 函数项级数

7.1 问题

1. 求下列函数序列 {fn(x)}的极限函数, 并讨论在给定的区间上是否一致收敛: (1) fn(x) = n2x(1−x2)n, x ∈ [0, 1]; (2)

sin x

nn
, (a) x ∈ [a, b], (b) x ∈ R; (3) sin(nnx)

nα
, α > 0, x ∈ R.

2. 讨论下列函数序列或函数项级数在指定区间上的一致收敛性: (1)
+∞∑
n=1

sinx sinnx√
n+ x2

, x ∈ R; (2)
+∞∑
n=1

(−1)n

n+ x2
, x ∈ R; (3)

{fn(x) = nαx(1− x)n}, α ∈ R, x ∈ [0, 1].
3. 设 fn(x)是 [0, 1]上的连续函数序列,并且满足 fn(x) → f(x)(n→ +∞),序列 {xn} ⊂ [0, 1]满足 xn → x0(n→ +∞).
(1) 试说明当 n→ +∞ 时, fn(xn) 未必收敛到 f(x0); (2) 设 fn(x) ⇒ f(x), x ∈ [0, 1], 证明必有 fn(xn) 收敛到 f(x0).
■ 自由选讲.

4. 讨论函数项级数
+∞∑
n=1

(
1 +

1

n

)−n2

e−nx 的收敛域.

5. 讨论函数列 fn(x) =
n
√
1 + xn 在 [0,+∞) 上的一致收敛性.

6. 函数列 {fn}, {gn} 在区间 I 上一致收敛, 且对于 ∀n, fn, gn 在 I 上有界. 讨论函数列 {fngn} 在 I 上的一致收敛性.

7. f(x) ∈ D

[
0,

1

2

]
, f(0) = 0, f ′(x) ≥ 0, 讨论

+∞∑
n=1

(−1)nf(xn) 在区间

[
0,

1

2

]
上一致收敛性.

8. 讨论函数项级数
+∞∑
n=1

(−1)n−1x2

(1 + x2)n
在 R 上的绝对收敛性、一致收敛性和绝对一致收敛性.

9. 讨论函数项级数
+∞∑
n=1

(1− x)xn

1− x2n
sinnx 在区间

(
1

2
, 1

)
上的一致连续性.

10. f(x) ∈ C1(a, b), 定义 Fn(x) =
n

2

[
f

(
x+

1

n

)
− f

(
x− 1

n

)]
, 证明函数列 {Fn} 在 (a, b) 上内闭一致收敛.

11. fn(x)在 R上可积一致收敛到 f(x),且存在 R上的可积函数 F (x)满足 |fn(x)| ≤ F (x). 证明 lim
n→+∞

ˆ +∞

−∞
fn(x)dx =

ˆ +∞

−∞
f(x)dx.

12. an 单调递减趋于 0, 证明
+∞∑
n=1

an sinnx 在 [0,+∞) 上一致收敛的充要条件是 an = o

(
1

n

)
. (这题稍微难了点!)
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13. 证明: (1)
ˆ 1

0

x−xdx =
+∞∑
n=1

1

nn
; (2)

ˆ 1

0

lnx
1− x

dx = −
+∞∑
n=1

1

n2
.

14. x > 1, 求导数
[

x

x+ 1
+

x2

(x+ 1)(x2 + 1)
+

x4

(x+ 1)(x2 + 1)(x4 + 1)
+

x8

(x+ 1)(x2 + 1)(x4 + 1)(x8 + 1)
· · ·
]′
.

15. 试构造一个函数列 {fn(x)}, 使得 {f ′
n(x)} 在 R 上一致收敛, {fn(x)} 在 R 上处处收敛但不一致收敛.

16. 可积函数列 {fn} 在 [a, b] 上一致收敛于函数 f , 且 ∀n ∈ N+, fn 有原函数 Fn, 证明 f 也有原函数 F .
17. (Arzela-Ascoli 引理). E 是紧集, 函数列 {fn(x)} 在 E 上逐点有界, 等度连续 (∀ε > 0, ∃δ > 0, s.t. ∀n ∈ N+, ∀|x−
x′| < δ, 成立|fn(x)− fn(x

′)| < ε). 证明 {fn(x)} 存在 E 上的一致收敛子列.
18. 求级数 1− 1

7
+

1

9
− 1

15
+

1

17
− 1

23
+ · · · 的和.

19. x ∈ (−1, 1), 求函数项级数
+∞∑
n=1

(−1)n−1xn

n
的和.

20. 区间 [a, b]上的连续函数列 {fn(x)}收敛到 f(x). 证明 f(x)连续的充要条件是 ∀ε > 0, ∀N ∈ N+, ∃N ′ > N, s.t.∀x ∈
[a, b], ∃nx ∈ [N,N ′], s.t.|fnx

(x)− f(x)| < ε.
21. 设函数 fn(x) 在 R 上定义且有界, 并在任何闭区间 [a, b] 上 fn(x) ⇒ φ(x). 问是否有 lim

n→+∞
sup
x
fn(x) = sup

x
φ(x)?

22. 函数列 fn(x) = cosnx 是否存在 R 上内闭一致收敛的子列?

7.2 解答

1. (1) 极限函数为 0, 因为 fn(
1

n
) >

n

3
, 因此不一致收敛.

(2) 极限函数为 0. (a) 因为 sup
x∈[a,b]

∣∣∣sin x

nn

∣∣∣ ≤ |a|+ |b|
nn

, 由 M-判别法知一致收敛; (b) 因为 f(nn) = sin 1, 因此不一致收

敛.
(3) 极限函数为 0, 因为 sup

x∈R

∣∣∣∣sin(nnx)

nα

∣∣∣∣ ≤ 1

nα
, 由 M-判别法知一致收敛.

2. (1)
N∑

n=1

sinx sinnx =
N∑

n=1

1

2

[
cos
(
n− 1

2

)
x− cos

(
n+

1

2

)
x

]
=

1

2

[
cos 1

2
x− cos

(
N +

1

2

)
x

]
一致有界, 1√

n+ x2

关于 n 单调递减且一致趋于 0, 因此由 Dirichlet 判别法知一致收敛.

(2)
N∑

n=1

(−1)n 一致有界, 1

n+ x2
关于 n 单调递减且一致趋于 0, 因此由 Dirichlet 判别法知一致收敛.

(3) sup
x∈[0,1]

fn(x) = fn(
1

n+ 1
) ∼ Cnα−1, 因此 α < 1 时一致收敛, α ≥ 1 时不一致收敛.

3. (1) 如 fn(x) =


1− nx, x ∈

[
0,

1

n

]
0, otherwise

, 取 xn =
1

n
.

(2) fn(x) ⇒ f(x) ⇒ f(x) ∈ C[0, 1]. 那么对于任意 ε > 0, 存在 δ > 0 使得 ∀x ∈ (x0 − δ, x0 + δ), |f(x)− f(x0)| <
ε

2
. 由

(一致)收敛性知当 n充分大时有 |xn−x0| < δ 且 sup
x∈[0,1]

|fn(x)− f(x)| <
ε

2
. 从而 |fn(xn)− f(x0)| ≤ |fn(xn)− f(xn)|+

|f(xn)− f(x0)| <
ε

2
+
ε

2
= ε, 因此有原收敛关系.

4. 原级数是
+∞∑
n=1

(
1

ex
(
1 + 1

n

)n
)n

, 而 lim
n→+∞

(
1 +

1

n

)n

= e, 因此当 x > −1 时收敛, 当 x < −1 时发散. 而当 x = −1

时, lim
n→+∞

en(
1 + 1

n

)n2 = lim
n→+∞

en−n2 ln(1+ 1
n ) = e

1
2 , 因此原幂级数发散.

5. 显然 fn(x) → max(1, x). 在 [0, 1]上, |fn(x)−1| ≤ n
√
2−1;在 [1,+∞)上, |fn(x)−x| ≤ n

√
2−1(因为 (fn(x)−x)′ < 0).

因此由最值判别法知一致收敛.
6. 先证一致有界性. 由一致收敛性,

∃N ∈ N+, s.t. ∀m,n ≥ N, ∀x ∈ I, |fn(x)− fm(x)| ≤ 1.

从而对 ∀n ∈ N+, ∀x ∈ I, 有
|fn(x)| ≤ sup

x∈I,1≤k≤N
|fk(x)|+ 1 :=Mf ,
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因此一致有界. 同理对 ∀n ∈ N+, ∀x ∈ I, 有 |gn(x)| ≤Mg.
从而

|fm(x)gm(x)− fn(x)gn(x)| ≤ |fm(x)gm(x)− fm(x)gn(x)|+ |fm(x)gn(x)− fn(x)gn(x)|

≤Mf |gm(x)− gn(x)|+Mg|fm(x)− fn(x)|.

由一致收敛性,
∀ε > 0, ∃N ′, s.t. ∀m,n > N ′, ∀x ∈ I, |fn(x)− fm(x)| < ε

2Mg

, |gn − gm| < ε

2Mf

.

此时 sup
x∈I

|fm(x)gm(x)− fn(x)gn(x)| < ε. 因此函数列 {fngn} 在 I 上一致收敛.

7.
N∑

n=1

(−1)n 一致有界, f(xn) 随 n 单调递减且一致趋于 0, 有 Dirichlet 判别法知一致收敛.

8. 绝对 (一致)收敛性:
∣∣∣∣(−1)n−1x2

(1 + x2)n

∣∣∣∣


= 0, x = 0

≤ 1

(1 + x2)n−1
, x 6= 0

知绝对收敛,
[

2n∑
k=n

∣∣∣∣(−1)k−1x2

(1 + x2)k

∣∣∣∣
]
x2= 1

n

=
(1 + 1

n
)n+1 − 1

(1 + 1
n
)2n

>

e− 1

e2
知不绝对一致收敛. 一致收敛性:

+∞∑
n=1

(−1)n−1 有界, x2

(1 + x2)n
关于 n 单调递减且一致趋于 0, 由 Dirichlet 判别

法知一致收敛.
9. 记 fn(x) =

(1− x)xn

1− x2n
. 则 fn(x) ≥ fn+1(x) ⇔ (1−x)(1+x2n+1) ≥ 0恒成立,且 fn(x) =

xn

1 + x+ x2 + · · ·+ x2n−1
≤

1

n+ 1
⇒ 0, 而

N∑
n=1

sinnx 关于 x ∈
(
1

2
, 1

)
一致有界, 因此由 Dirichlet 判别法, 知原级数一致收敛.

10. 由导数定义, lim
n→+∞

Fn(x) =
1

2
lim

n→+∞

[
f(x+ 1

n
)− f(x)
1
n

+
f(x− 1

n
)− f(x)

− 1
n

]
= f ′(x). 另一方面, 考虑闭区间 [c, d],

则我们有 |Fn(x)−f ′(x)| = 1

2

[
f(x+ 1

n
)− f(x)
1
n

+
f(x− 1

n
)− f(x)

− 1
n

− 2f ′(x)

]
=

1

2
[(f ′(ξ1)−f ′(x))+(f ′(ξ2)−f ′(x))] ≤

sup
|x−y|< 1

n

|f ′(x)− f ′(y)| → 0, 其中最后一步利用了 f ′(x) 在区间

[
a+ c

2
,
b+ d

2

]
上的一致连续性. 然后用 M-判别法.

11. 由题给条件, ∀ε > 0, ∃N > 0, ∃N ′ > 0, s.t. ∀n > N ′,∣∣∣∣ˆ +∞

N

fn(x)dx
∣∣∣∣ ≤ ˆ +∞

N

|fn(x)|dx ≤
ˆ +∞

N

F (x)dx < ε

8
,

|
ˆ −N

−∞
fn(x)dx| <

ˆ −N

−∞
|fn(x)|dx ≤

ˆ −N

−∞
F (x)dx < ε

8
,

且 ∣∣∣∣∣
ˆ N

−N

fn(x)dx−
ˆ N

−N

f(x)dx
∣∣∣∣∣ ≤
ˆ N

−N

|fn(x)− f(x)|dx < 2N · ε

4N
=
ε

2
.

因此, 我们有估计∣∣∣∣ˆ +∞

−∞
fn(x)dx−

ˆ +∞

−∞
f(x)dx

∣∣∣∣ ≤ ∣∣∣∣ˆ +∞

N

fn(x)dx
∣∣∣∣+ ∣∣∣∣ˆ +∞

N

f(x)dx
∣∣∣∣+
∣∣∣∣∣
ˆ −N

−∞
fn(x)dx

∣∣∣∣∣+
∣∣∣∣∣
ˆ −N

−∞
f(x)dx

∣∣∣∣∣
+

∣∣∣∣∣
ˆ N

−N

fn(x)dx−
ˆ N

−N

f(x)dx
∣∣∣∣∣

<
ε

8
· 4 + ε

2
= ε

对 ∀n > N ′ 成立. 从而有原极限.

12. 记 Sn,p(x) =

p∑
k=n

ak sin kx. 先证必要性. o(1) = Sn,2n

( π
4n

)
=

2n∑
k=n

ak sin
kπ

4n
≥ n

2
(a2n−1+a2n) sin

π

4
⇒ an = o

(
1

n

)
.

再证充分性. 定义单调递减数列 bn = sup
m≥n

{mam} = o(1).

(a) 当 0 ≤ x ≤ π

p
时, |Sn,p(x)| ≤

p∑
k=n

kakx ≤ pbnx ≤ bnπ
n→+∞→ 0.
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(b) 当 x ≥ π

n
时, 由于 ∀m > n,

∣∣∣∣∣
m∑

k=n

sin kx
∣∣∣∣∣ ≤ 1

sin(x
2
)
≤ π

x
≤ n, 利用 Abel 变换可知 |Sn,p(x)| ≤ nan ≤ bn

n→+∞→ 0.

(c) 当 π

p
< x <

π

n
时, 取 q =

⌊π
x

⌋
, 则 |Sn,p(x)| ≤ |Sn,q(x)|+ |Sq+1,p(x)| ≤ bnπ + bq+1 ≤ (π + 1)bn

n→+∞→ 0.

从而由 Cauchy 准则知一致收敛.

13. (1) x−x = e−x ln x = 1 +
+∞∑
n=1

(−1)n(x lnx)n
n!

. 一致收敛可交换极限积分顺序, 因此

ˆ 1

0

x−xdx =

ˆ 1

0

1 +
+∞∑
n=1

(−1)n(x lnx)n
n!

dx = 1 +
+∞∑
n=1

ˆ 1

0

(−1)n(x lnx)n
n!

dx = 1 +
+∞∑
n=1

1

(n+ 1)n+1
=

+∞∑
n=1

1

nn
.

(2) 考虑
+∞∑
n=1

tn ln t = t ln t
1− t

. 由于 ∀x ∈ (0, 1), t ∈ [0, x], |tn ln t| = |tn−1t ln t| ≤ xn−1e−1, 因此该级数在 [0, x] 上一致收

敛, 从而 ˆ x

0

+∞∑
n=1

tn ln tdt =
+∞∑
n=1

ˆ x

0

tn ln tdt =
ˆ x

0

t ln t
1− t

dt.

由于 ∀y ∈ [0, 1],

∣∣∣∣ˆ y

0

tn ln tdt
∣∣∣∣ = ∣∣∣∣yn+1 ln y

n+ 1
− yn+1

(n+ 1)2

∣∣∣∣ ≤ e+ 1

(n+ 1)2
, 因此

+∞∑
n=1

ˆ y

0

tn ln tdt 对 y ∈ [0, 1] 一致收敛, 从而

连续, 即是
ˆ 1

0

t ln t
1− t

dt = lim
x→1−0

ˆ x

0

t ln t
1− t

dt = lim
x→1−0

+∞∑
n=1

ˆ x

0

tn ln tdt =
+∞∑
n=1

ˆ 1

0

tn ln tdt = −
+∞∑
n=1

1

(n+ 1)2
.

两边同时加上

ˆ 1

0

ln tdt 得到
ˆ 1

0

ln t
1− t

dt = −
+∞∑
n=1

1

n2
.

14. 被导函数 =
+∞∑
n=0

x2
n

n∏
k=0

(
1 + x2k

) = (1− x)
+∞∑
n=0

x2
n

1− x2n+1 = (1− x)
+∞∑
n=0

(
1

1− x2n
− 1

1− x2n+1

)
= 1, 因此其导数为 0.

15. fn(x) = sin x

n2
.

16. 利用一致收敛性容易证明 f ∈ R[a, b] (why?). 设 Fn(x) =

ˆ x

a

f(t)dt, 则 sup
a≤x≤b

|Fn(x)−Fm(x)| ≤ sup
a≤x≤b

ˆ x

a

|fn(t)−

fm(t)|dt ≤ (b − a) sup
a≤x≤b

|fn(x) − fm(x)|dx → 0 ⇒ Fn(x) 一致收敛, 不妨设极限函数为 F . 交换极限和求导顺序, 知

F ′(x) = f(x).
17. 由 E 紧, 知存在可数稠密子集 Q = {xn}+∞

n=1. {fn(x1)} 有界, 因此可抽取收敛子列 {fn,1(x1)}. 同理 {fn,1(x2)} 有
界, 因此可抽取收敛子列 {fn,2(x2)}. 依此类推, 考虑对角线子列 {fn,n(x)}, 显然对于 ∀x ∈ Q, fn,n(x) 都收敛. 由等度
连续性知 ∀ε > 0, ∃δ > 0, s.t.∀n ∈ N+, ∀|x− x′| < δ, |fn(x)− fn(x

′)| < ε

3
. 由于 ∪x∈QB(x, δ) 是 E 的一个开覆盖, 因此

存在有限子覆盖 ∪K
k=1B(yk, δ). 由 fn,n(x) 在 Q 上的收敛性知 ∃N ∈ N+, s.t.∀n,m > N, ∀k = 1, 2, · · · ,K, |fn,n(yk) −

fm,m(yk)| <
ε

3
. 从而 ∀x ∈ E, ∀n,m > N, ∃yk, s.t.|x−yk| < δ, 且 |fn,n(x)−fm,m(x)| ≤ |fn,n(x)−fn,n(yk)|+ |fn,n(yk)−

fm,m(yk)|+ |fm,m(yk)− fm,m(x)| ≤ ε

3
+
ε

3
+
ε

3
= ε. 这说明 {fn,n(x)} 一致收敛.

18. 原式 = 1−
+∞∑
n=1

(
1

8n− 1
− 1

8n+ 1

)
= 1−

+∞∑
n=1

ˆ 1

0

[x8n−2(1− x2)]dx. 记 un(x) =

ˆ x

0

[t8n−2(1− t2)]dt. 显然 un(x) ∈

C[0, 1] 且
+∞∑
n=1

un(x) 一致收敛, 因此
+∞∑
n=1

un(1) =
+∞∑
n=1

lim
x→1−0

un(x) = lim
x→1−0

+∞∑
n=1

un(x) = lim
x→1−0

ˆ x

0

t6

(1 + t2)(1 + t4)
dt =

ˆ 1

0

t6

(1 + t2)(1 + t4)
dt = 1 − 1

8
(1 +

√
2)π, 其中倒数第三个等号利用了 ∀x ∈ (0, 1), 级数

+∞∑
n=1

t8n−2(1 − t2) 在区间 [0, x]

上的一致收敛性. 因此原式 =
1

8
(1 +

√
2)π.

19. 记 un(x) =
(−1)n−1xn

n
,并任取 0 < δ <

1

2
. 注意到在闭区间 [−1+δ, 1−δ]上,

+∞∑
n=1

u′n(x) =
+∞∑
n=1

(−1)n−1xn−1 =
1

1 + x

一致收敛, 且
+∞∑
n=1

un(x) 收敛, 因此 S′(x) =
+∞∑
n=1

u′n(x) =
1

1 + x
⇒ S(x) = ln(1 + x) + C. 由 S(0) = 0 ⇒ C = 0.
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幂级数的基本概念与性质

20. 先证必要性. ∀ε > 0, ∀N ∈ N+, ∀x ∈ [a, b], ∃Nx > N, s.t.|fNx
(x)−f(x)| < ε. 由连续性, ∃δx > 0, s.t.∀x ∈ (x−δx, x+

δx), |fNx
(x)− f(x)| < ε. ∪x∈[a,b](x− δx, x+ δx) 构成了 [a, b] 的开覆盖, 存在有限子覆盖 ∪n

i=1(xi − δxi
, xi + δxi

) ⊃ [a, b].
因此可取 N ′ = max

i=1,2,··· ,n
Nxi

.
再证充分性. 考虑在 x 处并做分解 |f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|. 由 fn(x) 的收敛性,
∀ε > 0, ∃N ∈ N+, s.t.∀n ≥ N, |f(x)−fn(x)| <

ε

3
. 再由题给条件, ∃N ′ > N, s.t.∀y, ∃ny ∈ [N,N ′], |fny

(y)−f(y)| < ε

3
. 最

后由连续性, ∃δ > 0, s.t.∀|x−y| < δ, ∀n ∈ [N,N ′], |fn(x)−fn(y)| <
ε

3
. 此时 ∀|x−y| < δ,取 n = ny ⇒ |f(x)−f(y)| < ε,

即连续性得证.
21. 考虑 fn(x) = e−(x−n)2 . 对于任意闭区间 [a, b], fn(x) 都一致收敛于 0, 但是 sup

x
fn(x) ≡ 1 6= 0 = sup

x
φ(x).

22. 不存在. 假设 fnk
= cosnkx在 R上内闭一致收敛. 由收敛性知 ∀ε > 0, ∃N, s.t.∀m > k > N, ∀x ∈ [−1, 1], | cosnkx−

cosnmx| < ε. 当 nm > 2nk 时, 考虑 x =
1

nm

, 则 | cosnkx− cosnmx| = | cos nk

nm

− cos 1| > cos 1
2
− cos 1. 矛盾.

8 幂级数的基本概念与性质

8.1 问题

1. 幂级数
+∞∑
n=0

anx
n,

+∞∑
n=0

bnx
n 收敛半径为 ra, rb, 给出下列幂级数收敛半径的范围: (1)

+∞∑
n=0

(an + bn)x
n; (2)

+∞∑
n=0

anbnx
n.

2. 求下列级数的和: (1)
+∞∑
n=0

(−1)n

2nn!
; (2)

+∞∑
n=0

(−1)n

3n+ 1
.

3. 求下列函数的 Maclaurin 展式: (1) ln(x+
√
1 + x2); (2) (arctanx)2.

4. 证明: 当 a, b > −1 时, 成立
ˆ 1

0

xa − xb

1− x
dx =

+∞∑
n=1

(
1

n+ a
− 1

n+ b

)
.

5. 设函数 f(x) 在闭区间 [a, b] 上各阶导数存在并且非负, 证明: f(x) =
+∞∑
n=0

f (n)(a)

n!
(x− a)n, ∀x ∈ [a, b).

■ 自由选讲.

6. 求幂级数
+∞∑
n=1

(
1 + 2 cos nπ

4

)n
n lnn xn 的收敛域.

7. 求级数
+∞∑
n=0

K∑
k=1

kn

n2

(
1− x

1 + x

)n

的收敛域, 其中 K ∈ N+.

8. 求级数
+∞∑
n=1

(−1)n

n n
√
n

(
x

2x+ 1

)n

的收敛域.

9. 求极限 lim
n→+∞

n∑
k=1

(−1)k−1 1

k
Ck

n.

10. 求幂级数
+∞∑
n=1

(−1)n−1

n(2n− 1)
x2n 的收敛域与和函数.

11. 求幂级数
+∞∑
n=1

n+ 1

n!2n
xn 的收敛域与和函数.

12. 求级数
+∞∑
m=1

+∞∑
n=1

m2n

3m(n3m +m3n)
的和.

13. an > 0, f(x) =
+∞∑
n=0

anx
n,

+∞∑
n=0

ann! 收敛, 证明
ˆ +∞

0

e−xf(x)dx =
+∞∑
n=0

ann!.

14. 证明 x = sinx+
+∞∑
n=1

(2n− 1)!!

(2n)!!

sin2n+1 x

2n+ 1
, x ∈

[
0,
π

2

]
, 并据此计算

+∞∑
n=1

1

n2
.

15. 设 f(x) =
+∞∑
n=1

xn

n2
. 证明当 x ∈ (0, 1) 时, f(x) + f(1− x) + lnx ln(1− x) =

π2

6
.

16.
+∞∑
n=1

an = A,
+∞∑
n=1

bn = B. 证明若 Cauchy 乘积级数
+∞∑
n=1

cn 收敛, 则它必收敛于 AB.
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幂级数的基本概念与性质

17. 设曲线 x
1
n + y

1
n = 1(n > 1) 在第一象限与坐标轴围成的面积为 I(n), 证明

+∞∑
n=1

I(n) < 4.

8.2 解答

1. 相加相乘有可能导致不好的项消失. 利用 Cauchy 判别法得到: (1) min{ra, rb} ≤ r ≤ ∞; (2) rarb ≤ r ≤ ∞.

2. (1) 利用 ex 展开式得 e−
1
2 ; (2) 定义 f(x) =

+∞∑
n=0

x3n+1

3n+ 1
, 原式即为 −f(−1). f ′(x) =

+∞∑
n=0

x3n =
1

1− x3
, 从而两边积分

得到 f(x) =

ˆ x

0

f ′(t)dt = 1

6

(
log(x2 + x+ 1)− 2 log(1− x) + 2

√
3 arctan

(
2x+ 1√

3

)
− π√

3

)
⇒ −f(−1) =

ln 2
3

+

√
3π

9
.

这一问求导再积分的合理性是: 幂级数收敛域内必内闭一致收敛, 因此连续.

3. (1) [ln(x+
√
1 + x2)]′ =

1√
1 + x2

= 1+
+∞∑
n=1

(−1)n(2n− 1)!!

(2n)!!
x2n ⇒ ln(x+

√
1 + x2) = x+

+∞∑
n=1

(−1)n(2n− 1)!!

(2n)!!(2n+ 1)
x2n+1.

(2) arctanx =
+∞∑
n=1

(−1)n−1

2n− 1
x2n−1,平方后计算其对应项系数得到 (arctanx)2 =

+∞∑
n=1

(−1)n−1

(
1 +

1

3
+ · · ·+ 1

2n− 1

)
x2n

n
.

4. ∀t ∈ (0, 1),

ˆ t

0

xa − xb

1− x
dx =

+∞∑
n=1

(
tn+a

n+ a
− tn+b

n+ b

)
. 令 t→ 1− 0, 右边的级数一致收敛 (最值判别法), 由连续性得到

结果.

5. 由带 Cauchy 余项的 Taylor 展开得 f(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k +

1

n!

ˆ x

a

(x− t)nf (n+1)(t)dt, ∀x ∈ [a, b]. 当 x < b 时,

做变换 [a, x] → [a, b], t 7→ a+
b− a

x− a
(t− a) = s, 其逆变换记为 φ(s) = a+

x− a

b− a
(s− a), 满足 φ(s) ≤ s. 因此余项

1

n!

ˆ x

a

(x− t)nf (n+1)(t)dt = 1

n!

(
x− a

b− a

)n+1 ˆ b

a

(b− s)nf (n+1)(φ(s))ds

≤ 1

n!

(
x− a

b− a

)n+1 ˆ b

a

(b− s)nf (n+1)(s)ds

(观察x = b 时的余项并利用导数非负) ≤
(
x− a

b− a

)n+1

f(b)
n→+∞→ 0.

6. lim
n→+∞

n

 (
1 + 2 cos nπ

4

)n
n lnn = lim

n→+∞

(
1 + 2 cos nπ

4

)
= 3, 因此收敛半径是 1

3
. 考察端点, 当 x =

1

3
时,

原式 =
7∑

n=1

(
1
3
+ 2

3
cos nπ

4

)n
n lnn +

+∞∑
n=1

7∑
k=0

( 1
3
+ 2

3
cos (8n+k)π

4
)8n+k

(8n+ k) ln(8n+ k)

= C +
+∞∑
n=1

7∑
k=0

( 1
3
+ 2

3
cos (8n+k)π

4
)8n+k

(8n+ k) ln(8n+ k)

≥ C +
+∞∑
n=1

 1

(8n) ln(8n) +

(
1−

√
2

3

)8n+3

(8n+ 3) ln(8n+ 3)
+

(
1−

√
2

3

)8n+5

(8n+ 5) ln(8n+ 5)


≥ C +

+∞∑
n=1

 1

(8n) ln(8n) +
(
1−

√
2

3

)8n+1

2

(8n) ln(8n)


≥ C +

+∞∑
n=1

[
1

2

1

(8n) ln(8n)

]
,

因此原级数发散. x = −1

3
时有类似讨论, 因此收敛域为

(
−1

3
,
1

3

)
.

7. 由上学期知识, lim
n→+∞

n

Õ
K∑

k=1

kn

n2
= K, 讨论端点后知收敛域为

∣∣∣∣1− x

1 + x

∣∣∣∣ ≤ 1

K
⇔ x ∈

[
K − 1

K + 1
,
K + 1

K − 1

]
.
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幂级数展开与多项式逼近

8. lim
n→+∞

n

 
1

n n
√
n
= 1, 讨论端点后知收敛域为 −1 <

x

2x+ 1
≤ 1 ⇔ x ∈ (−∞,−1] ∪ (−1

3
,+∞).

9. 构造 Sn(x) =
n∑

k=1

1

k
Ck

nx
k, 则 S′

n(x) =
n∑

k=1

Ck
nx

k−1 =
(1 + x)n − 1

x
. 从而

In = −S(−1) =

ˆ 0

−1

(1 + x)n − 1

x
dx =

ˆ 1

0

[1 + x+ · · ·+ xn−1]dx = 1 +
1

2
+ · · ·+ 1

n
→ +∞.

10. 容易验证收敛域为 [−1, 1]. 通过求导再积分, 得到和函数是

2
+∞∑
n=1

(−1)n−1

2n− 1

ˆ x

0

t2n−1dt = 2
+∞∑
n=1

(−1)n−1

ˆ x

0

ˆ t

0

s2n−2dsdt = 2

ˆ x

0

ˆ t

0

+∞∑
n=1

(−s2)n−1dsdt

=2

ˆ x

0

ˆ t

0

1

1 + s2
dsdt = 2

ˆ x

0

arctan sds = 2x arctanx− ln(1 + x2).

11. 显然收敛域为 R. 考虑一致收敛级数
+∞∑
n=1

xn+1

n!2n
= x(e

x
2 − 1), 逐项求导得到

+∞∑
n=1

n+ 1

n!2n
=
(x
2
+ 1
)
e

x
2 − 1.

12. 原式 =
+∞∑
m=1

+∞∑
n=1

m2n2

3mn(n3m +m3n)

对称性
=

1

2

+∞∑
m=1

+∞∑
n=1

[
m2n2

3mn(n3m +m3n)
+

m2n2

3nm(n3m +m3n)

]
=

1

2

+∞∑
m=1

+∞∑
n=1

( mn

3m3n

)
=

1

2

(
+∞∑
m=1

m

3m

)(
+∞∑
m=1

n

3n

) +∞∑
n=1

n
3n = 3

4

=
9

32
.

13. 一方面,
ˆ +∞

0

e−xf(x)dx ≥
ˆ +∞

0

e−x

(
N∑

n=0

anx
n

)
dx =

N∑
n=0

ann!, 从而
ˆ +∞

0

e−xf(x)dx ≥
+∞∑
n=0

ann!.

另一方面,
ˆ N

0

e−xf(x)dx ≤
+∞∑
n=0

an

ˆ N

0

e−xxndx ≤
+∞∑
n=0

an

ˆ +∞

0

e−xxndx =
+∞∑
n=0

ann!,从而
ˆ +∞

0

e−xf(x)dx ≤
+∞∑
n=0

ann!.

14. 利用 arcsinx = x+
+∞∑
n=1

(2n− 1)!!

(2n)!!

x2n+1

2n+ 1
, 换元 x = arcsinx 知 x = sinx+

+∞∑
n=1

(2n− 1)!!

(2n)!!

sin2n+1 x

2n+ 1
. 两边从 0 到

π

2

积分, 得到 π2

8
=

+∞∑
n=1

1

(2n− 1)2
. 由于

+∞∑
n=1

1

(2n)2
=

1

4

+∞∑
n=1

1

n2
⇒

+∞∑
n=1

1

(2n− 1)2
=

3

4

+∞∑
n=1

1

n2
, 因此

+∞∑
n=1

1

n2
=

4

3

π2

8
=
π2

6
.

15. 由
+∞∑
n=1

xn−1

n
在 (−1, 1) 上内闭一致收敛, 知 f(x) 可逐项求导. 令 F (x) = f(x) + f(1− x) + lnx ln(1− x), 则

F ′(x) = f ′(x)− f ′(1− x) +
ln(1− x)

x
− lnx

1− x
=

+∞∑
n=1

xn−1

n
−

+∞∑
n=1

(1− x)n−1

n
+

ln(1− x)

x
− lnx

1− x
= 0.

从而 F (x) ≡ lim
x→0

F (x) =
+∞∑
n=1

1

n2
=
π2

6
.

16. 设 f(x) =
+∞∑
n=1

anx
n, g(x) =

+∞∑
n=1

bnx
n. f(1), g(1)收敛⇒ ∀|x| < 1,

+∞∑
n=1

|anxn|,
+∞∑
n=1

|bnxn|收敛⇒ ∀|x| < 1,
+∞∑
n=1

cnx
n =(

+∞∑
n=1

anx
n

)(
+∞∑
n=1

bnx
n

)
. 这三个级数都在 x = 1 处收敛, 因此左连续, 令 x→ 1− 0 得

+∞∑
n=1

cn =

(
+∞∑
n=1

an

)(
+∞∑
n=1

bn

)
.

17. I(n) =
ˆ 1

0

(1− x
1
n )ndx x=t2n

= 2n

ˆ 1

0

(1− t2)nt2n−1dt = 2n

ˆ 1

0

(1− t2)n−1t2n−2(1− t2)tdt ≤ 2n

ˆ 1

0

[(1− t2)t2]n−1dt ≤

2n

4n−1
. 注意到

+∞∑
n=1

xn =
x

1− x
, 逐项求导得

+∞∑
n=1

nxn−1 =
1

(1− x)2
, 因此代入 n =

1

4
知

+∞∑
n=1

In ≤
+∞∑
n=1

2n

4n−1
=

32

9
< 4.

9 幂级数展开与多项式逼近

9.1 问题

■ 自由选讲.
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幂级数展开与多项式逼近

1. (Airy 方程). 利用 Maclaurin 级数求解微分方程 y′′(x)− xy(x) = 0.

2. 写出函数 f(x) =

(
arcsinx

x

)2

的 Maclaurin 级数并给出收敛域.

3. 写出函数 f(x) = ln(1 + x+ x2) 的 Maclaurin 级数并给出收敛域.
4. 写出函数 f(x) = arctan x sin θ

1− x cos θ 的 Maclaurin 级数并给出收敛域, 其中 θ ∈
[
0,
π

2

]
.

5. 证明 [0, 1] 上的连续函数可以被有理系数多项式逼近.
6. 证明 [0, 1] 上的连续函数可以被单调递升的多项式列 (即 P1 ≤ P2 ≤ · · · ≤ Pn ≤ · · · ) 逼近.
7. [a, b] 上的连续函数列 {fn(x)} 单调递升且收敛于 f(x). 证明 f(x) 一定能取到其最小值, 但未必能取到其最大值.

8. [a, b] 上的连续函数项级数
+∞∑
n=1

un(x),
+∞∑
n=1

vn(x) 满足 |un(x)| ≤ vn(x), ∀n ∈ N+, 且和函数
+∞∑
n=1

vn(x) 连续. 证明和函

数
+∞∑
n=1

un(x) 也连续.

9. 证明对任意 n ∈ N+ 和 x ∈ [0, π] 成立不等式

∣∣∣∣∣
n∑

k=1

sin kx
k

∣∣∣∣∣ ≤ 2
√
π.

10. 证明对任意 n ∈ N+ 和 x ∈ R 成立不等式
∣∣∣ex − (1 + x

n

)n∣∣∣ ≤ e|x| −
(
1 +

|x|
n

)n

<
x2e|x|

2n
.

11. 数列 {rn} 是 [0, 1] 区间内所有有理数的一个排列, 证明函数 f(x) =
+∞∑
n=1

|x− rn|
3n

在 [0, 1] 上处处连续、无理点处可

微、有理点处不可微.
12. 试举在 [0, 1] 上一致收敛于连续函数的处处不连续函数列 {fn(x)}.

9.2 解答

1. 设 y(x) =
+∞∑
n=0

anx
n. 在收敛域内,

(
+∞∑
n=0

anx
n

)′′

− x
+∞∑
n=0

anx
n = 0 ⇔

+∞∑
n=0

an+2(n+ 2)(n+ 1)xn −
+∞∑
n=1

an−1x
n = 0. 比

较系数知 a2 = 0, an+2 =
an−1

(n+ 1)(n+ 2)
, 从而


a3n =

(3n− 2)!!!

(3n)!
a0

a3n+1 =
(3n− 1)!!!

(3n+ 1)!
a1

a3n+2 = 0

, n ∈ N.

2. 设 g(x) = arcsin2 x,则 g′(x) =
2 arcsinx√

1− x2
⇒ (1−x2)(g′(x))2 = 4g(x). 两边求导,得 2(1−x2)g′(x)g′′(x)−2x(g′(x))2 =

4g′(x) ⇒ (1−x2)g′′(x)−xg′(x) = 2. 两边求 n−2次导数知 (1−x2)g(n)(x)−(2n−3)xg(n−1)(x)−(n−2)2g(n−2)(x) = 0.
令 x = 0 知 g(n)(0) = (n− 2)2g(n−2)(0). 由于 g(1)(0) = 0, g(2)(0) = 2, 从而 g(2n−1)(0) = 0, g(2n)(0) = 22n−1((n− 1)!)2,

因此 g(x) =
+∞∑
n=1

22n−1((n− 1)!)2

(2n)!
x2n ⇒ f(x) =

+∞∑
n=0

22n+1(n!)2

(2n+ 2)!
x2n, 收敛域为 [−1, 1].

3. ln(1 + x+ x2) = ln(1− x3)− ln(1− x) = −
+∞∑
n=1

x3n

n
+

+∞∑
n=1

xn

n
=

+∞∑
n=1

(
1− 3 · 1{3|n}

n

)
xn, 收敛域为 [−1, 1].

4. 利用欧拉公式, 知

f ′(x) =
sin θ

1− 2x cos θ + x2
=

1

2i
eiθ − e−iθ

(x− eiθ)(x− e−iθ)
=

1

2i

(
eiθ

1− eiθx
− e−iθ

1− e−iθx

)
=

1

2i

[
+∞∑
n=1

(
einθ − e−inθ)xn−1

]
=

+∞∑
n=1

sin(nθ)xn−1,

因此 f(x) =
+∞∑
n=1

sin(nθ)
n

xn. θ = 0 时, 收敛域为 R; θ 6= 0 时, 收敛域为 [−1, 1].

5. ∀f(x) ∈ C[0, 1], ∀ε > 0, ∃N ∈ N+, s.t.∃N次多项式PN (x), ∀x ∈ [0, 1], |PN (x)− f(x)| < ε

2
. 由于有理数在实数集中稠

密, 因此 ∃N次有理系数多项式QN (x), s.t.∀x ∈ [0, 1], |PN (x)−QN (x)| < ε

2
. 此时 |QN (x)− f(x)| < ε.

6. fn(x) := f(x)− 1

2n
可被多项式逼近, 因此 ∃Pn(x), s.t.|Pn(x)− fn(x)| <

1

2n+2
. 这样的 {Pn} 满足题意.
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7. 记 inf
x∈[a,b]

f(x) = m⇒ ∀k ≥ 1, ∃xk ∈ [a, b], s.t.m ≤ f(xk) < m+
1

k
. 由聚点原理, ∃子列 {xnk

} ⊂ {xn}, s.t. lim
k→+∞

xnk
=

x0 ∈ [a, b]. 由收敛性, ∃N > 0, s.t. ∀n > N, f(x0)− ε < fn(x0) ≤ f(x0). 从而

m ≤ f(x0) < fn(x0) + ε = lim
k→+∞

fn(xnk
) + ε ≤ lim

k→+∞
f(xnk

) + ε ≤ m+ ε.

令 ε→ 0 知 f(x0) = m. 对于最大值, 一个反例是 fn(x) = x1{0≤x≤1− 1
n} + (n− 1)(1− x)1{1− 1

n<x≤1}.

8. 任意固定 x0 ∈ [a, b], 考察
+∞∑
n=1

un(x) 在 x = x0 处的连续性. 由收敛性, ∀ε > 0, ∃N > 0, s.t.
+∞∑

n=N+1

vn(x0) <
ε

3
. 由连

续性, ∃δ > 0, s.t. ∀x ∈ (x0 − δ, x0 + δ) ∩ [a, b],
+∞∑

n=N+1

vn(x) <
ε

3
且

∣∣∣∣∣
N∑

n=1

[un(x)− un(x0)]

∣∣∣∣∣ < ε

3
. 从而

∣∣∣∣∣
+∞∑
n=1

un(x)−
+∞∑
n=1

un(x0)

∣∣∣∣∣ ≤
∣∣∣∣∣

N∑
n=1

[un(x)− un(x0)]

∣∣∣∣∣+
∣∣∣∣∣

+∞∑
n=N+1

un(x)

∣∣∣∣∣+
∣∣∣∣∣

+∞∑
n=N+1

un(x0)

∣∣∣∣∣
≤
∣∣∣∣∣

N∑
n=1

[un(x)− un(x0)]

∣∣∣∣∣+
+∞∑

n=N+1

vn(x) +
+∞∑

n=N+1

vn(x0) < ε.

9. 当 0 < x ≤
√
π

n
时,

∣∣∣∣∣
n∑

k=1

sin kx
k

∣∣∣∣∣ ≤
n∑

k=1

| sin kx|
k

≤
n∑

k=1

kx

k
≤ nx =

√
π.

当

√
π

n
< x ≤ π 时, 记 K =

õ√
π

x

û
, Sn =

n∑
k=K+1

sin kx, 则

∣∣∣∣∣
n∑

k=1

sin kx
k

∣∣∣∣∣ ≤
∣∣∣∣∣

K∑
k=1

sin kx
k

∣∣∣∣∣+
∣∣∣∣∣

n∑
k=K+1

sin kx
k

∣∣∣∣∣ ≤ √
π +

∣∣∣∣∣
n∑

k=K+1

sin kx
k

∣∣∣∣∣ = √
π +

∣∣∣∣∣
n∑

k=K+1

Sk − Sk−1

k

∣∣∣∣∣
≤

√
π +

∣∣∣∣∣
n−1∑

k=K+1

(
1

k
− 1

k + 1

)
Sk

∣∣∣∣∣+
∣∣∣∣Sn

n

∣∣∣∣ . (Abel 变换)

利用 |Sn| =
∣∣∣∣∣cos 2K+1

2
x− cos 2n+1

2
x

2 sin x
2

∣∣∣∣∣ ≤ 1

sin x
2

≤ π

x
, 知

∣∣∣∣∣
n−1∑

k=K+1

(
1

k
− 1

k + 1

)
Sk

∣∣∣∣∣+
∣∣∣∣Sn

n

∣∣∣∣ ≤ π

x

[
n−1∑

k=K+1

(
1

k
− 1

k + 1

)
+

1

n

]
=

1

K + 1

π

x
≤

√
π,

因此

∣∣∣∣∣
n∑

k=1

sin kx
k

∣∣∣∣∣ ≤ √
π +

√
π = 2

√
π.

10. 左边:∣∣∣ex − (1 + x

n

)n∣∣∣ = ∣∣∣∣∣
+∞∑
k=0

xk

k!
−

n∑
k=0

Ck
n

(x
n

)k∣∣∣∣∣ =
∣∣∣∣∣

n∑
k=2

(
1− (n− 1)(n− 2) · · · (n− k + 1)

nk−1

)
xk

k!
+

+∞∑
k=n+1

xk

k!

∣∣∣∣∣
≤

n∑
k=2

(
1− (n− 1)(n− 2) · · · (n− k + 1)

nk−1

)
|x|k

k!
+

+∞∑
k=n+1

|x|k

k!
= e|x| −

(
1 +

|x|
n

)n

.

右边:

e|x| −
(
1 +

|x|
n

)n

=
n∑

k=2

[
1−

(
1− 1

n

)(
1− 2

n

)
· · ·
(
1− k − 1

n

)]
|x|k

k!
+

+∞∑
k=n+1

|x|k

k!

≤
n∑

k=2

[
1−

(
1− 1

n
− 2

n
− · · · − k − 1

n

)]
|x|k

k!
+

+∞∑
k=n+1

|x|k

k!
=

n∑
k=2

1

2n

|x|k

(k − 2)!
+

+∞∑
k=n+1

|x|k

k!

<
x2

2n

n∑
k=2

|x|k−2

(k − 2)!
+
x2

2n

+∞∑
k=n+1

|x|k−2

(k − 2)!
=
x2

2n
e|x|.
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11. 原级数一致收敛, 因此连续. 考虑 Fx(h) =
f(x+ h)− f(x)

h
=

+∞∑
n=1

|x+ h− rn| − |x− rn|
3nh

, ∀x ∈ [0, 1]\Q. 由于

∣∣∣∣ |x+ h− rn| − |x− rn|
3nh

∣∣∣∣ ≤ |(x+ h− rn)− (x− rn)|
3n|h|

=
1

3n
,

因此 Fx(h) 在 h ∈ [−x, 1− x] 上一致收敛, 从而

f ′(x) = lim
h→0

Fx(h) =
+∞∑
n=1

lim
h→0

|x+ h− rn| − |x− rn|
3nh

=
+∞∑
n=1

sgn(x− rn)

3n
.

若 x = rk ∈ Q, 类似可知 [
+∞∑

n=1,n ̸=k

|x− rn|
3n

]′ ∣∣∣∣
x=rk

=
+∞∑

n=1,n ̸=k

sgn(x− rn)

3n
.

但是
|x− rk|

3k
在 x = rk 处不可导, 因此 f(x) =

+∞∑
n=1,n ̸=k

|x− rn|
3n

+
|x− rk|

3k
在 x = rk 处不可导.

12. fn(x) =
1

n
Dirichlet(x).

10 Fourier 级数

10.1 问题

■ 自由选讲.
1. 求函数 f(x) = x− bxc 的 Fourier 级数.
2. 求函数 f(x) = ax1x<0 + bx1x>0,−π ≤ x ≤ π 的 Fourier 级数.

3. 利用 f(x) = ex,−π ≤ x ≤ π 的 Fourier 级数计算
+∞∑
n=1

1

1 + n2
.

4. 2π 周期函数 f(x)在 [−π, π]上可积且绝对可积, f(x) ∼ a0
2
+

+∞∑
n=1

(an cosnx+ bn sinnx). 证明 f(x) sinx ∼ a0 sinx
2

+

+∞∑
n=1

(an cosnx+ bn sinnx) sinx.

5. 将定义在
(
0,
π

2

)
上的可积和绝对可积函数 f(x) 延拓到 (−π, π) 上, 使得 f(x) ∼

+∞∑
n=1

b2n−1 sin(2n− 1)x.

6. f(x) ∈ C1[−π, π], 证明其 Fourier 系数满足 an = o

(
1

n

)
, bn = O

(
1

n

)
.

7. 2π 周期函数 f(x) 满足 ∃α ∈ (0, 1], s.t. |f(x)− f(y)| ≤ L|x− y|α. 证明 an = O

(
1

nα

)
, bn = O

(
1

nα

)
.

8. f(x) 在 [0, π] 上连续且分段可导, f ′(x) 在 [0, π] 上可积且平方可积. 证明若条件
ˆ π

0

f(x)dx = 0 或 f(0) = f(π) = 0

之中有一个成立, 就有
ˆ π

0

[f ′(x)]2dx ≥
ˆ π

0

f2(x)dx.

9. 给定收敛于 0 的正数列 {εn}, 构造连续函数 f(x) 使得其 Fourier 系数对于无穷多个 n 满足 |an|+ |bn| > εn.

10. f(x) 是区间 [0, 2π] 上的凸函数, 证明
ˆ 2π

0

f(x) cosnxdx ≥ 0, ∀n ∈ N+.

11. 2π 周期函数 f(x) ∈ R[−π, π] 且 |f(x)| ≤M . 记 Sn(x) 是 f(x) 的 Fourier 级数前 n 阶和, 证明 |Sn(x)| ≲M lnn.

12. 2π 周期函数 f(x) ∈ C2(R), 满足 f ′′(x)+λf(x) = g(x), 其中 g(x) ∼ a0
2
+

+∞∑
n=1

(an cosnx+ bn sinnx), λ 6= n2, n ∈ N.

试求 f(x) 的 Fourier 级数.

13. 利用 f(x) = x2, x ∈ [−π, π] 的 Fourier 级数计算
+∞∑
n=1

1

n4
.

14. 利用 f(x) = 1|x|<a, x ∈ [−π, π] 的 Fourier 级数计算
+∞∑
n=1

cos2 na
n2

.
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15. f(x) ∈ R[−π, π], 其 Fourier 系数全为 0, 证明
ˆ π

−π

|f(x)|dx = 0.

16. 设 f(x) =
+∞∑
n=1

n2e−n sinnx, 证明 max
0≤x≤2π

|f(x)| ≥ 2

πe
.

17. 数列 {bn} 单调递减收敛于 0, 级数
+∞∑
n=1

bn
n
收敛, 证明 f(x) =

+∞∑
n=1

bn sinnx 在区间 [−π, π] 上可积且绝对可积.

18. 证明余元公式 Beta(p, 1 − p) :=

ˆ 1

0

xp−1(1 − x)−pdx =

ˆ +∞

0

xp−1

1 + x
dx =

π

sin pπ (0 < p < 1), 并尝试利用该公式计

算积分 I1 =

ˆ +∞

0

xα

1 + xβ
dx 和 I2 =

ˆ +∞

0

sinx
x

dx. (提示: 可参考教材习题十二第 12 题)

10.2 解答

1. T = 1, 因此设 f(x) ∼ a0
2

+
+∞∑
n=1

an cos(2nπx) +
+∞∑
n=1

bn sin(2nπx).

a0 = 2

ˆ 1

0

f(x)dx = 1, an = 2

ˆ 1

0

f(x) cos(2nπx)dx = 0, bn = 2

ˆ 1

0

f(x) sin(2nπx)dx = − 1

nπ
,

因此 f(x) ∼ 1

2
− 1

π

+∞∑
n=1

sin(2nπx)
n

.

2. a0 =
1

π

ˆ π

−π

f(x)dx =
b− a

2
π, an =

1

π

ˆ π

−π

f(x) cosxdx =
1− (−1)n

n2π
(a−b), bn =

1

π

ˆ π

−π

f(x) sinxdx =
(−1)n+1(a+ b)

n
,

因此 f(x) ∼ b− a

4
π +

2(a− b)

π

+∞∑
n=1

1

(2n− 1)2
cos(2n− 1)x+ (a+ b)

+∞∑
n=1

(−1)n+1

n
sinnx.

3. a0 =
1

π

ˆ π

−π

exdx =
2 sinhπ

π
,

an =
1

π

ˆ π

−π

ex cosnxdx =
1

nπ

ˆ π

−π

exd sinnx = − 1

nπ

ˆ π

−π

ex sinnxdx = −bn
n
,

bn =
1

π

ˆ π

−π

ex sinnxdx = − 1

nπ

ˆ π

−π

exd cosnx =
(−1)n−1(eπ − e−π)

nπ
+

1

nπ

ˆ π

−π

ex sinnxdx =
(−1)n−12 sinhπ

nπ
+
an
n
,

因此 an =
(−1)n2 sinhπ
(n2 + 1)π

, bn =
(−1)n−12n sinhπ

(n2 + 1)π
⇒ ex ∼ sinhπ

π

{
1 + 2

+∞∑
n=1

(−1)n

n2 + 1
(cosnx− n sinnx)

}
. 由于 Fourier

级数收敛到
f(x+ 0) + f(x− 0)

2
,因此令 x = π,得到 coshπ =

sinhπ
π

(
1 + 2

+∞∑
n=1

1

n2 + 1

)
⇒

+∞∑
n=1

1

n2 + 1
=
π cothπ − 1

2
.

4. 由积化和差公式,

a0 sinx
2

+
+∞∑
n=1

(an cosnx+ bn sinnx) sinx

=
a0 sinx

2
+

1

2

+∞∑
n=1

{an[sin(n+ 1)x− sin(n− 1)x] + bn[cos(n− 1)x− cos(n+ 1)x]}

=
b1
2

+
+∞∑
n=1

(
bn+1 − bn−1

2
cosnx+

an−1 − an+1

2
sinnx

)
.

对于函数 f(x) sinx, 其 Fourier 系数为 a′0 =
1

π

ˆ π

−π

f(x) sinxdx = b1,

a′n =
1

π

ˆ π

−π

f(x) sinx cosnxdx =
1

2π

ˆ π

−π

f(x)[sin(n+ 1)x− sin(n− 1)x]dx =
bn+1 − bn−1

2
,

b′n =
1

π

ˆ π

−π

f(x) sinx sinnxdx =
1

2π

ˆ π

−π

f(x)[cos(n− 1)x− cos(n+ 1)x]dx =
an−1 − an+1

2
.

因此两者系数相等.
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5. an = 0 ⇒奇延拓. 另一方面, 0 = b2n =
2

π

ˆ π

0

f(x) sin 2xdx =
2

π

[ˆ π
2

0

f(x) sin 2xdx+

ˆ 0

π
2

f(π − x)(− sin 2nt)(−dt)
]
=

ˆ π
2

0

[f(x)− f(π − x)] sin 2nxdx⇒ f(x) = f(π − x). 因此所求延拓为 F (x) =



f(x), 0 < x <
π

2

f(π − x),
π

2
< x < π

0, x = 0,
π

2

−F (−x), −π < x < 0

.

6. 直接按定义计算得到

|nan| =
∣∣∣∣nπ
ˆ π

−π

f(x) cosnxdx
∣∣∣∣ = ∣∣∣∣ 1π

ˆ π

−π

f(x)d sinnx
∣∣∣∣ = ∣∣∣∣− ˆ π

−π

f ′(x) sinnxdx
∣∣∣∣ = |b′n| = o(1),

|nbn| =
∣∣∣∣nπ
ˆ π

−π

f(x) sinnxdx
∣∣∣∣ = ∣∣∣∣ 1π

ˆ π

−π

f(x)d cosnx
∣∣∣∣ = 1

π

∣∣∣∣(−1)n[f(π)− f(−π)]−
ˆ π

−π

f ′(x) cosnxdx
∣∣∣∣

≤ |f(π)− f(−π)|
π

+ |a′n| = O(1).

7. an =
1

π

ˆ π

−π

f(x) cosnxdx =
1

π

ˆ π−π
n

−π−π
n

f
(
x+

π

n

)
cos(nx+ π)dx = − 1

π

ˆ π

−π

f
(
x+

π

n

)
cosnxdx. 两边取绝对值,

|an| =
∣∣∣∣ 12π
ˆ π

−π

[
f(x)− f

(
x+

π

n

)]
cosnxdx

∣∣∣∣ ≤ 1

2π

ˆ π

−π

∣∣∣f(x)− f
(
x+

π

n

)∣∣∣ | cosnx|dx
≤ 1

2π
L
(π
n

)α ˆ π

−π

| cosnx|dx ≤ L
(π
n

)α
⇒ an = O

(
1

nα

)
.

同理 bn = O

(
1

nα

)
.

8. (1)若
ˆ π

0

f(x)dx = 0,将 f(x)偶延拓,则 f(x) ∼
+∞∑
n=1

an cosnx⇒ f ′(x) ∼
+∞∑
n=1

(−nan) sinnx. 从而
2

π

ˆ π

0

[f ′(x)]2dx =

+∞∑
n=1

(nan)
2 ≥

+∞∑
n=1

a2n =
2

π

ˆ π

0

f2(x)dx. (2)若 f(0) = f(π) = 0,类似可将 f(x)奇延拓,则 f(x) ∼
+∞∑
n=1

bn sinnx⇒ f ′(x) ∼

+∞∑
n=1

(nbn) cosnx. 从而
2

π

ˆ π

0

[f ′(x)]2dx =
+∞∑
n=1

(nbn)
2 ≥

+∞∑
n=1

b2n =
2

π

ˆ π

0

f2(x)dx.

9. 令 n0 = 0. 由于 εn → 0, 因此 ∀k ∈ N+, ∃nk > nk−1 ∈ N+, s.t.εnk
<

1

k2
. 从而定义 f(x) =

+∞∑
k=1

1

k2
cosnkx, 由一致收

敛知连续性, 且其 Fourier 系数 |ank
|+ |bnk

| = 1

k2
> εnk

, ∀k.

10. 注意到
ˆ 2π

0

f(x) cosnxdx =
1

n

ˆ 2nπ

0

f
(x
n

)
cosxdx =

1

n

ˆ 2nπ

0

gn(x) cosxdx =
1

n

n−1∑
k=0

ˆ 2(k+1)π

2kπ

gn(x) cosxdx, 其中

gn(x) := f
(x
n

)
是 [0, 2nπ] 上的凸函数. 再由 cosx 的周期性, 我们只需证明

ˆ 2π

0

gn(x) cosxdx ≥ 0. 拆断区间:

ˆ 2π

0

gn(x) cosxdx =

ˆ π
2

0

gn(x) cosxdx+

ˆ π

π
2

gn(x) cosxdx+

ˆ 3π
2

π

gn(x) cosxdx+

ˆ 2π

3π
2

gn(x) cosxdx

=

ˆ π
2

0

gn(x) cosxdx+

ˆ π
2

0

gn (π − x) cos(π − x)dx+

ˆ π
2

0

gn(x+ π) cos(x+ π)dx+

ˆ π
2

0

gn(2π − x) cos(2π − x)dx

=

ˆ π
2

0

[gn(x) + gn(2π − x)− gn(π − x)− gn(π + x)] cosxdx.

由于 gn(x) 是凸函数, 因此 gn(x) + gn(2π − x)− gn(π − x)− gn(π + x) ≥ 0 恒成立, 因此有
ˆ 2π

0

gn(x) cosxdx ≥ 0.

11. 由课上所述结论,

|Sn(x)| =
1

π

∣∣∣∣∣
ˆ π

0

[f(x+ t) + f(x− t)]
sin(n+ 1

2
)t

2 sin t
2

dt
∣∣∣∣∣ ≤ 1

π

ˆ π

0

|f(x+ t) + f(x− t)|
| sin(n+ 1

2
)t|

2 sin t
2

dt
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≤ M

π

ˆ π

0

| sin(n+ 1
2
)t|

sin t
2

dt ≤ M

π

ˆ π

0

| sin(n+ 1
2
)t|

t
π

dt ≤M

ˆ (n+ 1
2 )π

0

| sin t|
t

dt

=M

ˆ 1

0

| sin t|
t

dt+M

ˆ (n+ 1
2 )π

1

| sin t|
t

dt ≤M

ˆ 1

0

1dt+M

ˆ (n+ 1
2 )π

1

1

t
dt

=M

[
1 + lnπ + ln

(
n+

1

2

)]
⇒ |Sn(x)| ≲M lnn.

12. 我们设 f(x) =
α0

2
+

+∞∑
n=1

(αn cosnx+βn sinnx),则 f ′(x) =
+∞∑
n=1

(nβn cosnx−nαn sinnx), f ′′(x) ∼
+∞∑
n=1

(−n2αn cosnx−

n2βn sinnx). 从而 α0 = a0, (λ− n2)αn = an, (λ− n2)βn = bn ⇒ f(x) ∼ a0
2

+
+∞∑
n=1

(
an

λ− n2
cosnx+

bn
λ− n2

sinnx
)
.

13. ∀x ∈ [−π, π], f(x) = x2 =
π2

3
+

+∞∑
n=1

(−1)n4

n2
cosnx. 由 Parseval 等式有

1

π

ˆ π

−π

x4dx =
1

2

(
2π2

3

)2

+
+∞∑
n=1

16

n4
⇒

+∞∑
n=1

1

n4
=
π4

90
.

14. f(x) ∼ a

π
+

+∞∑
n=1

2 sinna
nπ

cosnx. 由 Parseval 等式有

2a

π
=

1

π

ˆ π

−π

f2(x)dx =
2a2

π2
+

+∞∑
n=1

4 sin2 na

n2π2
⇒

+∞∑
n=1

sin2 na

n2
=
a(π − a)

2

⇒
+∞∑
n=1

cos2 na
n2

=
+∞∑
n=1

1

n2
−

+∞∑
n=1

sin2 na

n2
=
π2

6
− a(π − a)

2
.

15. 由 Parseval 等式知
ˆ π

−π

f2(x)dx = 0 ⇔
ˆ π

−π

|f(x)|dx = 0.

16. 显然 f(x) ∈ C(R). 由 Parseval 等式有 1

π

ˆ 2π

0

f2(x)dx =
+∞∑
n=1

n4e−2n. 而

LHS ≤ 1

π
2π max

x∈[0,2π]
f2(x) ≤ 2

(
max

x∈[0,2π]
|f(x)|

)2

,RHS ≥
+∞∑
n=1

e−2n =
e−2

1− e−2
≥ e−2,

因此 max
x∈[0,2π]

|f(x)| ≥ 1√
2e

≥ 2

πe
.

17. 由 Dirichlet 判别法知 f(x) 在 x 6= 0 时连续, 因此只需讨论当 x = 0 为瑕点时 |f | 在 [0, π] 上的广义可积性. 注意

到

ˆ π

π
n+1

|f(x)|dx =
n∑

k=1

ˆ π
k

π
k+1

|f(x)|dx, 且当 π

k + 1
≤ x ≤ π

k
时, 成立

|f(x)| ≤
∣∣∣∣∣

k∑
i=1

bi sin ix
∣∣∣∣∣+
∣∣∣∣∣

+∞∑
i=k+1

bi sin ix
∣∣∣∣∣ Abel 变换

≤ Sk +
bk+1

| sin x
2
|
≤ Sk +

bk+1

| x
π
|
≤ Sk + (k + 1)bk+1 ≤ Sk + (k + 1)bk.

这意味着

n∑
k=1

ˆ π
k

π
k+1

|f(x)|dx ≤ π
n∑

k=1

Sk

k(k + 1)
+ π

n∑
k=1

bk
k

= π
n∑

k=1

1

k(k + 1)

k∑
i=1

bi + π
n∑

k=1

bk
k

= π
n∑

i=1

bi

n∑
k=i

1

k(k + 1)
+ π

n∑
k=1

bk
k

≤ π
n∑

i=1

bi
i
+ π

n∑
k=1

bk
k

≤ 2π
+∞∑
n=1

bn
n
< +∞.

因此积分

ˆ π

0

|f(x)|dx 收敛.
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18. 第一个等式:
ˆ 1

0

xp−1(1− x)−pdx
x= t

1+t
=

ˆ +∞

0

tp−1

(1 + t)p−1
(1 + t)p

1

(1 + t)2
dt =

ˆ +∞

0

tp−1

1 + t
dt.

第二个等式: 利用变量替换 x =
1

t
有

ˆ +∞

1

xp−1

1 + x
dx =

ˆ 1

0

x−p

1 + x
dx ⇒ Beta(p, 1 − p) =

ˆ 1

0

xp−1 + x−p

1 + x
dx. 将 1

1 + x
展成幂级数, 从而

Beta(p, 1− p) = lim
r→1−0

ˆ r

0

xp−1 + x−p

1 + x
dx = lim

r→1−0

ˆ r

0

[
+∞∑
k=0

(−1)kxk+p−1 +
+∞∑
k=0

(−1)kxk−p

]
dx

= lim
r→1−0

[
+∞∑
k=0

(−1)k

k + p
rk+p +

+∞∑
k=0

(−1)k

k − p+ 1
rk−p+1

]
=

+∞∑
k=0

(−1)k

k + p
+

+∞∑
k=0

(−1)k

k − p+ 1

=
1

p
+

+∞∑
k=1

(−1)k
(

1

k + p
+

1

p− k

)
=

1

p
+

+∞∑
k=1

(−1)k
2p

p2 − k2
.

由于 cos px 的 Fourier 级数 cos px =
sin pπ
π

[
1

p
+

+∞∑
k=1

(−1)k
2p

p2 − k2
cos kx

]
在 |x| ≤ π 处处收敛, 令 x = 0, 得到

Beta(p, 1− p) =
1

p
+

+∞∑
k=1

(−1)k
2p

p2 − k2
=

π

sin pπ .

先求 I1. I1 =
ˆ +∞

0

xα

1 + xβ
dx

t= 1

1+xβ

=
1

β

ˆ 1

0

t−
α+1
β (1− t)

α+1
β −1dt = 1

β
Beta

(
1− α+ 1

β
,
α+ 1

β

)
=

1

β

π

sin α+1
β
π
.

再求 I2. 令 p =
x

π
, 0 < x < π, 得到 π

sinx =
π

x
+

+∞∑
n=1

(−1)n
2xπ

x2 − n2π2
, 即 1 =

sinx
x

+
+∞∑
n=1

(−1)n
2x sinx
x2 − n2π2

. 两边从 0 到

π 积分有 π =

ˆ π

0

sinx
x

dx+
+∞∑
n=1

(−1)n
ˆ π

0

2x sinx
x2 − n2π2

dx. 从而

I2 =

ˆ +∞

0

sinx
x

dx =
1

2

ˆ +∞

−∞

sinx
x

dx =
1

2

+∞∑
n=0

[ˆ (n+1)π

nπ

sinx
x

dx+

ˆ −nπ

−(n+1)π

sinx
x

dx
]

=
1

2

+∞∑
n=0

[ˆ π

0

sin(t+ nπ)

t+ nπ
dt+

ˆ π

0

sin[t− (n+ 1)π]

t− (n+ 1)π
dt
]
=

1

2

[ˆ π

0

sin t
t

dt+
+∞∑
n=1

(−1)n
ˆ π

0

2t sin t
t2 − n2π2

dt
]
=
π

2
.

11 Fourier 变换 *

11.1 问题

1. 定义 F(f)(ξ) =

ˆ
R
f(x)e−i2πxξdx为函数 f(x)的 Fourier变换 (如果是 d维,则定义为 F(f)(ξ) =

ˆ
Rd

f(x)e−i2πxT ξdx),

试化简 F(f ′)(ξ). 这里你可以假设 f(x) 光滑且在无穷远处快速收敛到 0, 比如说 ∀k, l ≥ 0, sup
x∈R

|x|k|f (l)(x)| <∞. 下面

不如都用上这个假设吧!
2. 证明 Fourier变换有如下性质: (1) F(f+g) = F(f)+F(g); (2) F(f(x+h))(ξ) = ei2πhξF(f(x))(ξ); (3) F(f(λx))(ξ) =

λ−dF(f(x))

(
ξ

λ

)
, 这里 d 是维数; (4) 多项式 P

(
d
dx

)
=
∑
k

ak
dk

dxk , 则 F
(
P

(
d
dx

)
f

)
(ξ) = P (i2πξ)F(f)(ξ).

3. 在一定正则性条件下, Fourier 逆变换可定义为 F−1(f)(x) =

ˆ
R
f(ξ)ei2πxξdξ. 你可以按照如下步骤: (1) 设 K(x) =

e−πx2 , 证明 F(K)(ξ) = K(ξ); (2) 设 Kδ(x) = δ−
1
2 e−

πx2

δ , 则当 δ → 0 时, (f ∗Kδ)(x) ⇒ f(x), ∀x ∈ R. 这里 “*” 是卷积
算子, (f ∗ g)(x) :=

ˆ
R
f(x − t)g(t)dt; (3)

ˆ
R
f(x)F(g)(x)dx =

ˆ
R
F(f)(x)g(x)dx; (4) f(0) =

ˆ
R
F(f)(ξ)dξ. 有了这个

结论, 我们可以形式定义 F(δ(x))(ξ) = 1,F−1(1)(x) = δ(x). 背后其实蕴含着用 Kδ 逼近的结果.
4. 证明 Fourier 变换有如下性质: (1) F(f ∗ g) = F(f)F(g); (2) ‖f‖L2 = ‖F(f)‖L2 .
5. 证明 Fourier 变换有如下性质: (1) f(x) 是径向函数当且仅当 F(f) 是径向函数 (我们说 g(x) 是径向函数, 如果存在
一元函数 g0 使得 g(x) = g0(‖x‖2)); (2) f(x) 是 α 阶齐次函数, 那么 F(f)(ξ) 是 −(d+ α) 阶齐次函数.
6. 利用 Fourier 变换求解偏微分方程 ∂tu(x, t) + ∂xu(x, t) = 0, u(x, 0) = u0(x).

34



致谢

11.2 解答

1. F(f ′)(ξ) =

ˆ
R
f ′(x)e−i2πxξdx =

ˆ
R
e−i2πxξdf(x) = i2πξ

ˆ
R
f(x)e−i2πxξdx = i2πξF(f)(ξ).

2. 直接计算.
3. (1) 定义 K(ξ) = F(K)(ξ) =

ˆ
R
e−πx2

e−i2πxξdx, 则

K′(ξ) =

ˆ
R
(−i2πx)f(x)ei2πxξdx = i

ˆ
R
f ′(x)e−i2πxξdx = iF(f ′)(ξ) = −2πξK(ξ).

注意到 K(0) = 1, 解微分方程得到 K(ξ) = e−πξ2 = K(ξ).
(2) 容易证明 f(x) 一致连续. (f ∗Kδ)(x)− f(x) =

ˆ
R
Kδ(t)[f(x− t)− f(x)]dt, 然后拆断区间.

(3) 用 Fubini 定理交换积分顺序即可.
(4) 记 Gδ(x) = e−πδx2 , 则 F(Gδ)(ξ) = Kδ(ξ). 从而

ˆ
R
f(x)Kδ(x)dx =

ˆ
R
F(f)(ξ)Gδ(ξ)dξ. 由于 Kδ 是偶函数, 因此左

边是 (f ∗Kδ)(0), 在 δ → 0 时趋于 f(0). 右边用拆断区间的方法知在 δ → 0 时趋于

ˆ
R
F(f)(ξ)dξ.

最后, 令 F (y) = f(x+ y), 利用平移公式知 f(x) = F (0) =

ˆ
R
F(F )(ξ)dξ =

ˆ
R
F(f)ei2πxξdξ.

4. (1) 用 Fubini 定理交换积分顺序即可.
(2) 利用 Fourier 逆变换, 有

‖f‖L2 =

ˆ
R
f(x)f(x)dx =

ˆ
R

(ˆ
R
F(f)(ξ)ei2πxξdξ

)(ˆ
R
F(f)(ζ)ei2πxζdζ

)
dx

=

ˆ
R2

F(f)(ξ)F(f)(ζ)

(ˆ
R
ei2πx(ξ−ζ)dx

)
dξdζ =

ˆ
R2

F(f)(ξ)F(f)(ζ)δ(ξ − ζ)dξdζ

=

ˆ
R
F(f)(ξ)F(f)(ξ)dξ = ‖F(f)‖L2 .

5. 直接计算.
6. 两边对变量 x做 Fourier变换,知 ∂t(F(u))+i2πξF(u) = 0,F(u)(ξ, 0) = F(u0)(ξ),因此 F(u)(ξ, t) = e−i2πξtF(u0)(ξ).
从而两边做 Fourier 逆变换知 u(x) =

ˆ
R
F(u0)(ξ)e

i2πξ(x−t)dξ = u0(x− t).
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